May 29, 2024
Photonic flatband resonances for free-electron radiation – Nature

Photonic flatband resonances for free-electron radiation – Nature

  • Baba, T. Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rakich, P. T. et al. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nat. Mater. 5, 93–96 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, C.-H., Son, Y.-W., Yang, L., Cohen, M. L. & Louie, S. G. Electron beam supercollimation in graphene superlattices. Nano Lett. 8, 2920–2924 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pellegrini, C., Marinelli, A. & Reiche, S. The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    Article 
    ADS 

    Google Scholar
     

  • De Abajo, F. G. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Friedman, A., Gover, A., Kurizki, G., Ruschin, S. & Yariv, A. Spontaneous and stimulated emission from quasifree electrons. Rev. Mod. Phys. 60, 471 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schächter, L. Beam-Wave Interaction in Periodic and Quasi-Periodic Structures (Springer, 2011).

  • de Abajo, F. G. et al. Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Roques-Carmes, C. et al. Towards integrated tunable all-silicon free-electron light sources. Nature Commun. 10, 3176 (2019).

  • Haeusler, U., Seidling, M., Yousefi, P. & Hommelhoff, P. Boosting the efficiency of Smith–Purcell radiators using nanophotonic inverse design. ACS Photon. 9, 664–671 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yamaguti, S., Inoue, J.-i, Haeberlé, O. & Ohtaka, K. Photonic crystals versus diffraction gratings in Smith-Purcell radiation. Phys. Rev. B 66, 195202 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Ochiai, T. & Ohtaka, K. Electron energy loss and Smith-Purcell radiation in two-and three-dimensional photonic crystals. Opt. Express 13, 7683–7698 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Bendana, X., Polman, A. & de Abajo, F. J. G. Single-photon generation by electron beams. Nano Lett. 11, 5099–5103 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fernandes, D. E., Maslovski, S. I. & Silveirinha, M. G. Cherenkov emission in a nanowire material. Phys. Rev. B 85, 155107 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Adamo, G. et al. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pendry, J. & Martin-Moreno, L. Energy loss by charged particles in complex media. Phys. Rev. B 50, 5062 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • So, J.-K. et al. Cerenkov radiation in metallic metamaterials. Appl. Phys. Lett. 97, 151107 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kaminer, I. et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).


    Google Scholar
     

  • Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kfir, O., Di Giulio, V., de Abajo, F. J. G. & Ropers, C. Optical coherence transfer mediated by free electrons. Sci. Adv. 7, eabf6380 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hayun, A. B. et al. Shaping quantum photonic states using free electrons. Sci. Adv. 7, eabe4270 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dahan, R. et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 16, 1123–1131 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Adiv, Y. et al. Quantum nature of dielectric laser accelerators. Phys. Rev. X 11, 041042 (2021).

    CAS 

    Google Scholar
     

  • Kremers, C., Chigrin, D. N. & Kroha, J. Theory of Cherenkov radiation in periodic dielectric media: emission spectrum. Phys. Rev. A 79, 013829 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Chiu, C.-K. & Schnyder, A. P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors. Phys. Rev. B 90, 205136 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Brenny, B., Coenen, T. & Polman, A. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J. Appl. Phys. 115, 244307 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z., Yao, K., Chen, M., Chen, H. & Liu, Y. Manipulating Smith-Purcell emission with Babinet metasurfaces. Phys. Rev. Lett. 117, 157401 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jing, L. et al. Polarization shaping of free-electron radiation by gradient bianisotropic metasurfaces. Laser Photon. Rev. 15, 2000426 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tang, H. et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci. Appl. 10, 157 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cerjan, A., Hsu, C. W. & Rechtsman, M. C. Bound states in the continuum through environmental design. Phys. Rev. Lett. 123, 023902 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cerjan, A. et al. Observation of bound states in the continuum embedded in symmetry bandgaps. Sci. Adv. 7, eabk1117 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Guerrera, S. & Akinwande, A. I. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates. Nanotechnology 27, 295302 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Adiv, Y. et al. Observation of 2D Cherenkov radiation. Preprint at https://arXiv.org/abs/2203.01698 (2022).

  • Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Varkentina, N. et al. Cathodoluminescence excitation spectroscopy: nanoscale imaging of excitation pathways. Preprint at https://arXiv.org/abs/2202.12520 (2022).

  • Black, D. S. et al. Net acceleration and direct measurement of attosecond electron pulses in a silicon dielectric laser accelerator. Phys. Rev. Lett. 123, 264802 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schönenberger, N. et al. Generation and characterization of attosecond microbunched electron pulse trains via dielectric laser acceleration. Phys. Rev. Lett. 123, 264803 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Niedermayer, U. et al. Low-energy-spread attosecond bunching and coherent electron acceleration in dielectric nanostructures. Phys. Rev. Appl. 15, L021002 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fallah, A., Kiasat, Y., Silveirinha, M. G. & Engheta, N. Nonreciprocal guided waves in the presence of swift electron beams. Phys. Rev. B 103, 214303 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, Y. et al. Transition radiation in photonic topological crystals: quasiresonant excitation of robust edge states by a moving charge. Phys. Rev. Lett. 123, 057402 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kollár, A. J., Fitzpatrick, M., Sarnak, P. & Houck, A. A. Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in circuit quantum electrodynamics. Commun. Math. Phys. 376, 1909–1956 (2019).

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X 3, 1473052 (2018).


    Google Scholar
     

  • Leykam, D. & Flach, S. Perspective: photonic flatbands. APL Photonics 3, 070901 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tang, L. et al. Photonic flat-band lattices and unconventional light localization. Nanophotonics 9, 1161–1176 (2020).

    Article 

    Google Scholar
     

  • Li, J., White, T. P., O’Faolain, L., Gomez-Iglesias, A. & Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nguyen, D. X. et al. Magic configurations in moiré superlattice of bilayer photonic crystal: almost-perfect flatbands and unconventional localization. Preprint at https://arXiv.org/abs/2104.12774 (2021).

  • Leykam, D., Flach, S. & Chong, Y. D. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Pan, M., Zhao, H., Miao, P., Longhi, S. & Feng, L. Photonic zero mode in a non-Hermitian photonic lattice. Nat. Commun. 9, 1308 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Noda, S., Kitamura, K., Okino, T., Yasuda, D. & Tanaka, Y. Photonic-crystal surface-emitting lasers: review and introduction of modulated-photonic crystals. IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).

    Article 

    Google Scholar
     

  • Longhi, S. Photonic flat-band laser. Opt. Lett. 44, 287–290 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xia, S. et al. Unconventional flatband line states in photonic Lieb lattices. Phys. Rev. Lett. 121, 263902 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schächter, L. & Ron, A. Smith-Purcell free-electron laser. Phys. Rev. A 40, 876 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andrews, H. & Brau, C. Gain of a Smith-Purcell free-electron laser. Phys. Rev. Accel. Beams 7, 070701 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, V. & Kim, K.-J. Analysis of Smith-Purcell free-electron lasers. Phys. Rev. E 73, 026501 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Freund, H. & Abu-Elfadl, T. Linearized field theory of a Smith-Purcell traveling wave tube. IEEE Trans. Plasma Sci. 32, 1015–1027 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Brinkmann, R., Derbenev, Y. & Flöttmann, K. A low emittance, flat-beam electron source for linear colliders. Phys. Rev. Accel. Beams 4, 053501 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Piot, P., Sun, Y.-E. & Kim, K.-J. Photoinjector generation of a flat electron beam with transverse emittance ratio of 100. Phys. Rev. Accel. Beams 9, 031001 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Nguyen, K. T. et al. Intense sheet electron beam transport in a uniform solenoidal magnetic field. IEEE Trans. Electron Devices 56, 744–752 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. High-power millimeter-wave BWO driven by sheet electron beam. IEEE Trans. Electron Devices 60, 471–477 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y. et al. Apparatus and methods for generating and enhancing Smith-Purcell radiation. US patent 10,505,334 (2019).

  • Source link