May 4, 2024
Physiology and diseases of tissue-resident macrophages – Nature

Physiology and diseases of tissue-resident macrophages – Nature

  • Metchnikoff, E. Lecture on phagocytosis and immunity. Br. Med. J. 1, 213–217 (1891).


    Google Scholar
     

  • Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145–152 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Hassnain Waqas, S. F. et al. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J. Leukoc. Biol. 102, 845–855 (2017). References 7,14 describe the embryo-derived macrophage lineage in metazoans and its independence from the HSC lineage.

  • Mase, A., Augsburger, J. & Bruckner, K. Macrophages and their organ locations shape each other in development and homeostasis—a Drosophila perspective. Front. Cell Dev. Biol. 9, 630272 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez Perdiguero, E. & Geissmann, F. Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb. Symp. Quant. Biol. 78, 91–100 (2013).

    PubMed 

    Google Scholar
     

  • Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. V. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. V. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016). This study, along with refs. 17,21,77describes tissue specification of resident macrophages.

  • Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakai, M. et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655–670.e658 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heldin, C. H., Lu, B., Evans, R. & Gutkind, J. S. Signals and receptors. Cold Spring Harb. Perspect. Biol. 8, a005900 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haldar, M. et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156, 1223–1234 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Santiago-Garcia, J., Kodama, T. & Pitas, R. E. The class A scavenger receptor binds to proteoglycans and mediates adhesion of macrophages to the extracellular matrix. J. Biol. Chem. 278, 6942–6946 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Leitinger, B. Transmembrane collagen receptors. Annu. Rev. Cell Dev. Biol. 27, 265–290 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Woo, H. J., Shaw, L. M., Messier, J. M. & Mercurio, A. M. The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2). J. Biol. Chem. 265, 7097–7099 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Ley, K., Pramod, A. B., Croft, M., Ravichandran, K. S. & Ting, J. P. How mouse macrophages sense what is going on. Front. Immunol. 7, 204 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kashio, M. et al. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc. Natl Acad. Sci. USA 109, 6745–6750 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link, T. M. et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat. Immunol. 11, 232–239 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009). A study the homeostatic functions of macrophages.

  • Tcymbarevich, I. et al. Lack of the pH-sensing receptor TDAG8 (GPR65) in macrophages plays a detrimental role in murine models of inflammatory bowel disease. J. Crohns Colitis 13, 245–258 (2019).

    PubMed 

    Google Scholar
     

  • Fang, H. Y. et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114, 844–859 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Cox, N., Pokrovskii, M., Vicario, R. & Geissmann, F. Origins, biology, and diseases of tissue macrophages. Annu. Rev. Immunol. 39, 313–344 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010). The studies in refs. 34,45,151,157 examine the roles of macrophages in tissue growth and repair.

  • Lobov, I. B. et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417–421 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ip, W. K. E. & Medzhitov, R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6, 6931 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757.e717 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019). An investigation into the origin and maintenance of bone osteoclasts.

  • Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saftig, P. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl Acad. Sci. USA 95, 13453–13458 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meijer, C. et al. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver 20, 66–77 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang, M. et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration. Nature 587, 626–631 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollard, J. W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). References 50,55,73,78,143 describe tissue-specific functions of resident macrophages.

  • Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coull, J. A. M. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, N. et al. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 373, eabe9383 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233.e217 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. H., Kim, S. N., Kwon, H. J., Maddipati, K. R. & Granneman, J. G. Adipogenic role of alternatively activated macrophages in beta-adrenergic remodeling of white adipose tissue. Am. J. Physiol. 310, R55–R65 (2016).


    Google Scholar
     

  • Guo, L. et al. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis–Pyle disease spectrum and degenerative encephalopathy with brain malformation. Am. J. Hum. Genet. 104, 925–935 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oosterhof, N. et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104, 936–947 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erblich, B., Zhu, L. Y., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 4, 27 (2018).

    PubMed 

    Google Scholar
     

  • Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 (2012).

    CAS 

    Google Scholar
     

  • Nicholson, A. M. et al. CSF1R mutations link POLD and HDLS as a single disease entity. Neurology 80, 1033–1040 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nott, A. et al. Brain cell type-specific enhancer–promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frattini, A. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet. 25, 343–346 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Sobacchi, C. et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 39, 960–962 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Mirza, R., DiPietro, L. A. & Koh, T. J. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175, 2454–2462 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. Z. et al. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Invest. 122, 4519–4532 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457, 318–321 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, P. E., Hardy, M. P. & Pollard, J. W. Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol. Endocrinol. 11, 1636–1650 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Nishinakamura, R. et al. The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 beta c receptor-deficient mice is reversed by bone marrow transplantation. J. Exp. Med. 183, 2657–2662 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Baker, A. D. et al. Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism. J. Lipid Res. 51, 1325–1331 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werner, Y. et al. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat. Neurosci. 23, 351–362 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e338 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertrand, J. Y. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147–4156 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G. & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Le Guyader, D. et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132–141 (2008).

    PubMed 

    Google Scholar
     

  • Tober, J., McGrath, K. E. & Palis, J. Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb. Blood 111, 2636–2639 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5084 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Palis, J. et al. Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis. Proc. Natl Acad. Sci. USA 98, 4528–4533 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 49, 640–653 e645 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gentek, R. et al. Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 48, 1160–1171.e1165 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • McGrath, K. E. et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumner, R., Crawford, A., Mucenski, M. & Frampton, J. Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 19, 3335–3342 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206, 3089–3100 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boisset, J. C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–U236 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, J., Ruedl, C. & Karjalainen, K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43, 382–393 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsou, C. L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoyer, F. F. et al. Tissue-specific macrophage responses to remote injury impact the outcome of subsequent local immune challenge. Immunity 51, 899–914.e897 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Schepper, S. et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175, 400–415.e413 (2018).

    PubMed 

    Google Scholar
     

  • Petraki, S., Alexander, B. & Bruckner, K. Assaying blood cell populations of the Drosophila melanogaster larva. J. Vis. Exp. https://doi.org/10.3791/52733 (2015).

  • Sampson, C. J., Amin, U. & Couso, J. P. Activation of Drosophila hemocyte motility by the ecdysone hormone. Biol. Open 2, 1412–1420 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grigorian, M., Mandal, L., Hakimi, M., Ortiz, I. & Hartenstein, V. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Dev. Biol. 353, 105–118 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanot, R., Zachary, D., Holder, F. & Meister, M. Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243–257 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Rizki, T. M. & Rizki, R. M. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev. Comp. Immunol. 16, 103–110 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Geissmann, F. & Mass, E. A stratified myeloid system, the challenge of understanding macrophage diversity. Semin. Immunol. 27, 353–356 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Rosas, M. et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344, 645–648 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X. Y. et al. The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity 47, 903–912.e4 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. M. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makhijani, K. & Bruckner, K. Of blood cells and the nervous system: hematopoiesis in the Drosophila larva. Fly 6, 254–260 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinberger, T. et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat. Commun. 11, 4549 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calderon, B. et al. The pancreas anatomy conditions the origin and properties of resident macrophages. J. Exp. Med. 212, 1497–1512 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serbina, N. V., Jia, T., Hohl, T. M. & Pamer, E. G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Shemer, A. et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat. Commun. 9, 5206 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouwens, L., Baekeland, M., De Zanger, R. & Wisse, E. Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology 6, 718–722 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Kanitakis, J., Petruzzo, P. & Dubernard, J. M. Turnover of epidermal Langerhans’ cells. N. Engl. J. Med. 351, 2661–2662 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bittmann, I. et al. Cellular chimerism of the lung after transplantation. An interphase cytogenetic study. Am. J. Clin. Pathol. 115, 525–533 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Bittmann, I. et al. The role of graft-resident Kupffer cells and lymphocytes of donor type during the time course after liver transplantation—a clinico-pathological study. Virchows Arch. 443, 541–548 (2003).

    PubMed 

    Google Scholar
     

  • Dai, X. M., Zong, X. H., Sylvestre, V. & Stanley, E. R. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood 103, 1114–1123 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Pridans, C. et al. Macrophage colony-stimulating factor increases hepatic macrophage content, liver growth, and lipid accumulation in neonatal rats. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G388–G398 (2018).

    PubMed 

    Google Scholar
     

  • Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huffman, J. A., Hull, W. M., Dranoff, G., Mulligan, R. C. & Whitsett, J. A. Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice. J. Clin. Invest. 97, 649–655 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagata, S. & Segawa, K. Sensing and clearance of apoptotic cells. Curr. Opin. Immunol. https://doi.org/10.1016/j.coi.2020.07.007 (2021).

  • Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Kimura, Y. et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc. Natl Acad. Sci. USA 113, 14097–14102 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472, 471–475 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Terpstra, V. & van Berkel, T. J. Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 95, 2157–2163 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Theurl, I. et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat. Med. 22, 945–951 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, B. C., Whitsett, J. A. & Nakata, K. Pulmonary alveolar proteinosis. New Engl. J. Med. 349, 2527–2539 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Stamatiades, E. G. et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell 166, 991–1003 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyagawa, K. et al. Osteoclast-derived IGF1 is required for formation of pagetic bone lesions in vivo. JCI Insight 5, e133113 (2020).

  • Xian, L. et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodan, G. A. & Martin, T. J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat. Med. 8, 943–949 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonkin, J. et al. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol. Ther. 23, 1189–1200 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, H. et al. Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nat. Commun. 8, 669 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simkin, J. et al. Macrophages are required to coordinate mouse digit tip regeneration. Development 144, 3907–3916 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vi, L. et al. Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat. Commun. 9, 5191 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlundt, C. et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone 106, 78–89 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Cattin, A. L. et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 162, 1127–1139 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godwin, J. W., Pinto, A. R. & Rosenthal, N. A. Macrophages are required for adult salamander limb regeneration. Proc. Natl Acad. Sci. USA 110, 9415–9420 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrie, T. A., Strand, N. S., Yang, C. T., Rabinowitz, J. S. & Moon, R. T. Macrophages modulate adult zebrafish tail fin regeneration. Development 141, 2581–2591 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44, 1162–1176 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Coates, J. A. et al. Identification of functionally distinct macrophage subpopulations in Drosophila. eLife 10, e58686 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kitagawa, K. et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am. J. Pathol. 165, 237–246 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo, T. et al. Heterogeneity of presenile dementia with bone cysts (Nasu–Hakola disease): three genetic forms. Neurology 59, 1105–1107 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Pridans, C. et al. Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r locus. J. Immunol. 201, 2683–2699 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satoh, T. et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495, 524–528 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igarashi, Y. et al. Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. Sci. Rep. 8, 14567 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e614 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, Y. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18, 665–674 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barreda, D. R., Neely, H. R. & Flajnik, M. F. Evolution of myeloid cells. Microbiol. Spectr. 4, 0007-2015 (2016).


    Google Scholar
     

  • Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Nagata, S. Apoptosis and Clearance of Apoptotic Cells. Annu. Rev. Immunol. 36, 489–517 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, Z. et al. Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proc. Natl Acad. Sci. USA 113, E5434–E5443 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyanishi, M., Segawa, K. & Nagata, S. Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity. Int Immunol 24, 551–559 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Colonna, L., Parry, G. C., Panicker, S. & Elkon, K. B. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity. Clin. Immunol. 163, 84–90 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Pickering, M. C., Botto, M., Taylor, P. R., Lachmann, P. J. & Walport, M. J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 76, 227–324 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46, 191–201 (2002).

    PubMed 

    Google Scholar
     

  • Schrijvers, D. M., De Meyer, G. R. Y., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscl. Throm. Vas. 25, 1256–1261 (2005).

    CAS 

    Google Scholar
     

  • Bayon, L. G. et al. Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23, 1224–1231 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338.e326 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matlung, H. L., Szilagyi, K., Barclay, N. A. & van den Berg, T. K. The CD47–SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol. Rev. 276, 145–164 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy. JCI Insight 5, e134728 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link