May 4, 2024
Pivotal role of reversible NiO6 geometric conversion in oxygen evolution – Nature

Pivotal role of reversible NiO6 geometric conversion in oxygen evolution – Nature

  • Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J. M. Anionic redox progresses for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Z. F. et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Ener. 4, 329–338 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, J. et al. A review on fundamental for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimaud, A. et al. Activating lattice oxygen redox reaction in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mefford, J. T. et al. Water electrolysis on La1−xSrxCoO3δ perovskite electrocatalysts. Nat. Commun. 7, 11503 (2017).


    Google Scholar
     

  • Pan, Y. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 11, 2002 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hibbert, D. B. & Churchill, C. R. Kinetics of the electrochemical evolution of isotopically enriched gases part 2.—18O16O evolution on NiCo2O4 and LixCo3xO4 in alkaline solution. J. Chem. Soc. Faraday Trans. 80, 1965–1975 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 13, 229–237 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, R. et al. Towards identifying the active sites on RuO2 (110) in catalyzing oxygen evolution. Energy Environ. Sci. 10, 2626–2637 (2017).

  • Halck, N., Petrykin, V., Krtil, P. & Rossmeisl, J. Beyond the volcano limitations in electrocatalysis-oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682–13688 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, M. et al. Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nat. Commun. 10, 4993 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Retuerto, M. et al. Role of lattice oxygen content and Ni geometry in the oxygen evolution activity of the Ba-Ni-O system. J. Power Sources 404, 56–63 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garces-Pineda, F., Blasco-Ahicart, M., Nieto-Castro, D., Lopez, N. & Galan-Mascaros, J. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gracia, J. Spin dependent interactions catalyse the oxygen electrochemistry. Phys. Chem. Chem. Phys. 19, 20451–20456 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 11, 4647 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colburn, A. W., Levey, K. J., Ohare, D. & Macpherson, J. V. Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation. Phys. Chem. Chem. Phys. 23, 8100–8117 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dionigi, F. & Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6, 1600621 (2016).

    Article 

    Google Scholar
     

  • Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019).

    Article 

    Google Scholar
     

  • Morales, D. M. & Risch, M. Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys. Energy 3, 034013 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Formal, F. et al. Back electron-hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 136, 2564–2574 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Krysiak, O., Cichowicz, G., Conzuelo, F., Cyranski, M. & Augustynski, J. Ni–Fe–Cr-oxides: an efficient catalyst activated by visible light for the oxygen evolution reaction. Z. Phys. Chem. 234, 633–643 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bediako, D. K. et al. Structure activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801–6809 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McBreen, J. et al. In situ time-resolved X-ray absorption near edge structure study of the nickel oxide electrode. J. Phys. Chem. 93, 6308–6311 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohtsu, H. & Tanaka, K. Equilibrium of low- and high-spin states of Ni(II) complexes controlled by the donor ability of bidentate ligands. Inorg. Chem. 43, 3024–3030 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nast, R. Coordination chemistry of metal alkynyl compounds. Coord. Chem. Rev. 47, 125–164 (1982).

    Article 

    Google Scholar
     

  • Tao, Z. et al. The nature of photoinduced phase transition and metastable states in vanadium dioxide. Sci. Rep. 6, 38514 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C., Fontaine, O., Tarascon, J. & Grimaud, A. Chemical recognition of active oxygen species on the surface of oxygen evolution reaction electrocatalysts. Angew. Chem. Int. Edn 129, 8778–8782 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Köhler, L., Abrishami, M., Raddatis, V., Geppert, J. & Risch, M. Mechanistic parameters of electrocatalytic water oxidation on LiMn2O4 in comparison to natural photosynthesis. ChemSusChem 10, 4479–4490 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. & Asthagiri, A. Solvation effects on DFT predictions of ORR activity on metal surfaces. Catal. Today 323, 35–43 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Trzesniewski, B. J. et al. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. J. Am. Chem. Soc. 137, 15112–15121 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 143, 1493–1502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy, C. et al. Impact of nanoparticles size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Decoupled redox catalytic hydrogen production with a robust electrolyte-Borne electron and proton carrier. J. Am. Chem. Soc. 143, 223–231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link