May 8, 2024
Polariton Bose–Einstein condensate from a bound state in the continuum – Nature

Polariton Bose–Einstein condensate from a bound state in the continuum – Nature

  • von Neumann, J. & Wigner, E. P. In The Collected Works of Eugene Paul Wigner (ed. Wightman, A. S.) 291–293 (Springer, 1993).

  • Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A. 32, 3231–3242 (1985).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358, 565–567 (1992).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater 1, 16048 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Mermet-Lyaudoz, R. et al. Realization of bound state in the continuum induced by vertical symmetry breaking in photonic lattice. Preprint at https://arxiv.org/abs/1905.03868 (2019).

  • Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities 2nd edn (Oxford Science, 2008).

  • Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Dusel, M. et al. Room temperature organic exciton–polariton condensate in a lattice. Nat. Commun. 11, 2863 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974–976 (2009).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Walker, P. M. et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119, 097403 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Walker, P. M. et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102, 012109 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rosenberg, I., Mazuz-Harpaz, Y., Rapaport, R., West, K. & Pfeiffer, L. Electrically controlled mutual interactions of flying waveguide dipolaritons. Phys. Rev. B 93, 195151 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4, eaat8880 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Suàrez-Forero, D. G. et al. Enhancement of parametric effects in polariton waveguides induced by dipolar interactions. Phys. Rev. Lett. 126, 137401 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Turnbull, G. A., Andrew, P., Jory, M. J., Barnes, W. L. & Samuel, I. D. W. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 64, 125122 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Doeleman, H. M., Monticone, F., den Hollander, W., Alù, A. & Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photon. 12, 397–401 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Gerace, D. & Andreani, L. C. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs. Phys. Rev. E. 69, 056603 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Koshelev, K. L., Sychev, S. K., Sadrieva, Z. F., Bogdanov, A. A. & Iorsh, I. V. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys. Rev. B. 98, 161113 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light 9, 56 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lu, L. et al. Engineering a light–matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points. Photon. Res. 8, A91–A100 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120, 186103 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dang, N. H. M. et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett. 20, 2113–2119 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Metasurface integrated monolayer exciton polariton. Nano Lett. 20, 5292–5300 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Sanvitto, D. et al. Rapid radiative decay of charged excitons. Phys. Rev. B 62, R13294–R13297 (2000).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Source link