May 4, 2024
Practical recommendations for using ctDNA in clinical decision making – Nature

Practical recommendations for using ctDNA in clinical decision making – Nature

  • American Cancer Society. Risk of Dying from Cancer Continues to Drop at an Accelerated Pace https://www.cancer.org/latest-news/facts-and-figures-2022.html (2022).

  • Arnold, M. et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): a population-based study. Lancet Oncol. 20, 1493–1505 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinzani, P. et al. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. Clin. Chem. Lab. Med. 59, 1181–1200 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, N. M. & Smith, C. S. Causes and imaging features of false positives and false negatives on F-PET/CT in oncologic imaging. Insights Imaging 2, 679–698 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sørensen, C. G., Karlsson, W. K., Pommergaard, H. C., Burcharth, J. & Rosenberg, J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence—a systematic review. Int. J. Surg. 25, 134–144 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hing, J. X. et al. Clinical utility of tumour marker velocity of cancer antigen 15–3 (CA 15–3) and carcinoembryonic antigen (CEA) in breast cancer surveillance. Breast 52, 95–101 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Litvak, A. et al. False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer. J. Natl Compr. Canc. Netw. 12, 907–913 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss, E. L., Hollingworth, J. & Reynolds, T. M. The role of CA125 in clinical practice. J. Clin. Pathol. 58, 308 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, G. et al. Impact of baseline serum lactate dehydrogenase concentration on the efficacy of pembrolizumab and ipilimumab in patients with advanced melanoma: data from KEYNOTE-006. Eur. J. Cancer 72, S122–S123 (2017).

    Article 

    Google Scholar
     

  • Bachet, J. B. et al. RAS mutation analysis in circulating tumor DNA from patients with metastatic colorectal cancer: the AGEO RASANC prospective multicenter study. Ann. Oncol. 29, 1211–1219 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elazezy, M. & Joosse, S. A. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput. Struct. Biotechnol. J. 16, 370–378 (2018). This review summarizes how ctDNA may be used in the clinical management of patients with cancer, as well as the current technologies that are available for measuring ctDNA.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasenleithner, S. O. & Speicher, M. R. A clinician’s handbook for using ctDNA throughout the patient journey. Mol. Cancer 21, 81 (2022). This review discusses the various approaches to measuring ctDNA, how to select the most appropriate test for each clinical application, and the pipeline of tests available.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bos, M. K. et al. Comparison of variant allele frequency and number of mutant molecules as units of measurement for circulating tumor DNA. Mol. Oncol. 15, 57–66 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krebs, M. G. et al. Practical considerations for the use of circulating tumor DNA in the treatment of patients with cancer: a narrative review. JAMA Oncol. 8, 1830–1839 (2022). This narrative review summarizes the considerations required for including ctDNA testing in the clinical management of patients with cancer, including the decision on which assay is most appropriate for each clinical use.

    Article 
    PubMed 

    Google Scholar
     

  • Boonstra, P. A. et al. Clinical utility of circulating tumor DNA as a response and follow-up marker in cancer therapy. Cancer Metastasis Rev. 39, 999–1013 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasi, P. M. et al. Impact of circulating tumor DNA-based detection of molecular residual disease on the conduct and design of clinical trials for solid tumors. JCO Precis. Oncol. 6, e2100181 (2022). This review surveys the landscape of clinical trials that integrate ctDNA into the evaluation of patients and treatment outcomes.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020). This prospective phase 2 clinical trial evaluated ctDNA in patients with advanced solid tumors treated with pembolizumab.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen, E. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J. Clin. Oncol. 37, 1547–1557 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coombes, R. C. et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin. Cancer Res. 25, 4255–4263 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinert, T. et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 5, 1124–1131 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cisneros-Villanueva, M. et al. Cell-free DNA analysis in current cancer clinical trials: a review. Br. J. Cancer 126, 391–400 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malla, M., Loree, J. M., Kasi, P. M. & Parikh, A. R. Using circulating tumor DNA in colorectal cancer: current and evolving practices. J. Clin. Oncol. 40, 2846–2857 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, K. et al. Commercial ctDNA assays for minimal residual disease detection of solid tumors. Mol. Diagn. Ther. 25, 757–774 (2021). This review summarizes the commercial platforms and underlying technologies as well as clinical trials that are incorporating ctDNA evaluation for MRD detection.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Gale, D. et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann. Oncol. 33, 500–510 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parikh, A. R. et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin. Cancer Res. 27, 5586–5594 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogawa, M., Yokoyama, K., Imoto, S. & Tojo, A. Role of circulating tumor DNA in hematological malignancy. Cancers 13, 2078 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, X., Yan, H., Chen, L., Zhang, Y. & Sun, C. Clinical value of ctDNA in hematological malignancies (lymphomas, multiple myeloma, myelodysplastic syndrome, and leukemia): a meta-analysis. Front. Oncol. 11, 632910 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, E. A. et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 32, 1167–1177 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Q. et al. Circulating cell-free DNA for cancer early detection. Innovation 3, 100259 (2022).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Keller, L., Belloum, Y., Wikman, H. & Pantel, K. Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. Br. J. Cancer 124, 345–358 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bredno, J., Lipson, J., Venn, O., Aravanis, A. M. & Jamshidi, A. Clinical correlates of circulating cell-free DNA tumor fraction. PLoS ONE 16, e0256436 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014). The data presented in this study demonstrate that ctDNA can be detected across multiple cancer types, although detection rates varied on the basis of cancer type and disease progression.

    Article 

    Google Scholar
     

  • Tivey, A., Church, M., Rothwell, D., Dive, C. & Cook, N. Circulating tumour DNA—looking beyond the blood. Nat. Rev. Clin. Oncol. 19, 600–612 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohara, S. et al. Prognostic implications of preoperative versus postoperative circulating tumor DNA in surgically resected lung cancer patients: a pilot study. Transl. Lung Cancer Res. 9, 1915–1923 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumgartner, J. M. et al. Preoperative circulating tumor DNA in patients with peritoneal carcinomatosis is an independent predictor of progression-free survival. Ann. Surg. Oncol. 25, 2400–2408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Pre-operative ctDNA predicts survival in high-risk stage III cutaneous melanoma patients. Ann. Oncol. 30, 815–822 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal, B. et al. Assessment of molecular residual disease using circulating tumor DNA to identify multiple myeloma patients at high risk of relapse. Front. Oncol. 12, 786451 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, V. K. et al. Genotype-specific differences in circulating tumor DNA levels in advanced NSCLC. J. Thorac. Oncol. 16, 601–609 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calderwood, S. K. Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy. Discov. Med. 15, 188–194 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henriksen, T. V. et al. The effect of surgical trauma on circulating free DNA levels in cancer patients-implications for studies of circulating tumor DNA. Mol. Oncol. 14, 1670–1679 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasi, P. M. et al. BESPOKE study protocol: a multicentre, prospective observational study to evaluate the impact of circulating tumour DNA guided therapy on patients with colorectal cancer. BMJ Open 11, e047831 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, S. A. et al. Kinetics of postoperative circulating cell-free DNA and impact on minimal residual disease detection rates in patients with resected stage I–III colorectal cancer. J. Clin. Oncol. 41, 5 (2023).

    Article 

    Google Scholar
     

  • Garcia-Murillas, I. et al. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol 5, 1473–1478 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 7, 1034–1047 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons, H. A. et al. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin. Cancer Res. 26, 2556–2564 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholer, L. V. et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin. Cancer Res. 23, 5437–5445 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tarazona, N. et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann. Oncol. 30, 1804–1812 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol. 5, 1118–1123 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fakih, M. et al. Evaluation of comparative surveillance strategies of circulating tumor DNA, imaging, and carcinoembryonic antigen levels in patients with resected colorectal cancer. JAMA Netw. Open 5, e221093 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasari, A. et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal–Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 17, 757–770 (2020). This review, from a panel convened from the Colon and Rectal-Anal Task Forces of the US National Cancer Institute, highlights clinical applications of ctDNA testing that could change decision making.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argilés, G. et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1291–1305 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Peng, Y., Mei, W., Ma, K. & Zeng, C. Circulating tumor DNA and minimal residual disease (MRD) in solid tumors: current horizons and future perspectives. Front. Oncol. 11, 763790 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loupakis, F. et al. Detection of molecular residual disease using personalized circulating tumor DNA assay in patients with colorectal cancer undergoing resection of metastases. JCO Precis. Oncol. 5, 1166–1177 (2021).

    Article 

    Google Scholar
     

  • Henriksen, T. V. et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin. Cancer Res. 28, 507–517 (2022). This prospective study of 168 patients with stage III colorectal cancer demonstrated that serial ctDNA measurements following surgery is prognostic of survival outcomes.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Groot, V. P. et al. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin. Cancer Res. 25, 4973–4984 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikh, A. R. et al. Analysis of DNA damage response gene alterations and tumor mutational burden across 17,486 tubular gastrointestinal carcinomas: implications for therapy. Oncologist 24, 1340–1347 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tie, J. et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 5, 1710–1717 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Murillas, I. et al. Detection of ctDNA following surgery predicts relapse in breast cancer patients receiving primary surgery. Cancer Res. 82, P2-01-10 (2022).

    Article 

    Google Scholar
     

  • Kotani, D. et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat. Med. 29, 127–134 (2023). This study presents results from an interim analysis of GALAXY, a prospective, observational arm of CIRCULATE-Japan that establishes ctDNA as a prognostic and predictive biomarker in patients with CRC.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y. et al. Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort. Transl. Lung Cancer Res. 9, 269–279 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricciuti, B. et al. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC). J. Immunother. Cancer 9, e001504 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raja, R. et al. Early reduction in ctDNA predicts survival in patients with lung and bladder cancer treated with durvalumab. Clin. Cancer Res. 24, 6212–6222 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bockelman, C., Engelmann, B. E., Kaprio, T., Hansen, T. F. & Glimelius, B. Risk of recurrence in patients with colon cancer stage II and III: a systematic review and meta-analysis of recent literature. Acta Oncol. 54, 5–16 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Koenig, J. L. et al. Microsatellite instability and adjuvant chemotherapy in stage II colon cancer. Am. J. Clin. Oncol. 42, 573–580 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. New Engl. J. Med. 386, 2261–2272 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verbus, E. A. et al. Circulating tumor DNA as a predictive biomarker in adjuvant chemotherapy for patients with stage 2a colon cancer (COBRA). Ann. Surg. Oncol. 28, 4095–4097 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Folprecht, G. et al. The CIRCULATE trial: circulating tumor dna based decision for adjuvant treatment in colon cancer stage II evaluation (AIO-KRK-0217). Clin. Colorectal Cancer 21, 170–174 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Taieb, J. & Gallois, C. Adjuvant chemotherapy for stage III colon cancer. Cancers 12, 2679 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniguchi, H. et al. CIRCULATE-Japan: circulating tumor DNA-guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci. 112, 2915–2920 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasari, A. et al. NRG-GI008: colon adjuvant chemotherapy based on evaluation of residual disease (CIRCULATE-US). J. Clin. Oncol. 40, TPS212 (2022).

    Article 

    Google Scholar
     

  • Lonardi, S. et al. The PEGASUS trial: post-surgical liquid biopsy-guided treatment of stage III and high-risk stage II colon cancer patients. J. Clin. Oncol. 38, TPS4124 (2020).

    Article 

    Google Scholar
     

  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

    Article 

    Google Scholar
     

  • American Cancer Society. Treatment of Breast Cancer Stages I–III https://www.cancer.org/cancer/breast-cancer/treatment/treatment-of-breast-cancer-by-stage/treatment-of-breast-cancer-stages-i-iii.html (2022).

  • Henry, N. L. et al. Promoting quality and evidence-based care in early-stage breast cancer follow-up. J. Natl Cancer Inst. 106, dju034 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markopoulos, C. et al. Multigene assays in early breast cancer: Insights from recent phase 3 studies. Eur. J. Surg. Oncol. 46, 656–666 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cailleux, F. et al. Circulating tumor DNA after neoadjuvant chemotherapy in breast cancer is associated with disease relapse. JCO Precis. Oncol. 6, e2200148 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shaw, J. et al. Serial postoperative ctDNA monitoring of breast cancer recurrence. J. Clin. Oncol. 40, 562 (2022).

    Article 

    Google Scholar
     

  • Felip, E. et al. 1O IMpower010: ctDNA status in patients (pts) with resected NSCLC who received adjuvant chemotherapy (chemo) followed by atezolizumab (atezo) or best supportive care (BSC). Immun. Oncol. Technol. 16, 1001106 (2022).


    Google Scholar
     

  • Kim, C. et al. Longitudinal circulating tumor DNA analysis in blood and saliva for prediction of response to osimertinib and disease progression in EGFR-mutant lung adenocarcinoma. Cancers 13, 3342 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennouna, J. et al. Phase II study evaluating the mechanisms of resistance on tumor tissue and liquid biopsy in patients with EGFR-mutated non-pretreated advanced lung cancer receiving osimertinib until and beyond radiologic progression: the MELROSE trial. Clin. Lung Cancer 21, e10–e14 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babjuk, M. et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and carcinoma in situ)—2019 update. Eur. Urol. 76, 639–657 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • National Comprehensive Cancer Network. NCCN Guidelines: Bladder Cancer Version 2 https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf (2022).

  • Powles, T. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 595, 432–437 (2021). Data from the IMvigor010 trial suggested that ctDNA testing in patients with urothelial carcinoma may help to guide adjuvant therapy decisions.

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • De Mattos-Arruda, L. et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 6, 8839 (2015).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Beagan, J. J. et al. Circulating tumor DNA as a preoperative marker of recurrence in patients with peritoneal metastases of colorectal cancer: a clinical feasibility study. J. Clin. Med. 9, 1738 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bando, H. et al. Effects of metastatic sites on circulating tumor DNA in patients with metastatic colorectal cancer. JCO Precis. Oncol. 6, e2100535 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Waldeck, S. et al. Early assessment of circulating tumor DNA after curative‐intent resection predicts tumor recurrence in early‐stage and locally advanced non‐small‐cell lung cancer. Mol. Oncol. 16, 527–537 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taieb, J. et al. Analysis of circulating tumour DNA (ctDNA) from patients enrolled in the IDEA-FRANCE phase III trial: prognostic and predictive value for adjuvant treatment duration. Ann. Oncol. 30, v867 (2019).

    Article 

    Google Scholar
     

  • Qiu, B. et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat. Commun. 12, 6770 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Prowell, T. M. & Pazdur, R. Pathological complete response and accelerated drug approval in early breast cancer. New Engl. J. Med. 366, 2438–2441 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fayanju, O. M. et al. The clinical significance of breast-only and node-only pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT): a review of 20,000 breast cancer patients in the National Cancer Data Base (NCDB). Ann. Surg. 268, 591–601 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Waingankar, N. et al. The impact of pathologic response to neoadjuvant chemotherapy on conditional survival among patients with muscle-invasive bladder cancer. Urol. Oncol. 37, 572.e521 (2019).

    Article 

    Google Scholar
     

  • Li, S. et al. Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy. JCO Precis. Oncol. 4, 244–257 (2020).

    Article 

    Google Scholar
     

  • Magbanua, M. J. M. et al. Circulating tumor DNA and magnetic resonance imaging to predict neoadjuvant chemotherapy response and recurrence risk. NPJ Breast Cancer 7, 32 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, P.-H. et al. Circulating tumor DNA as a predictive marker of recurrence for patients with stage II–III breast cancer treated with neoadjuvant therapy. Front. Oncol. 11, 736769 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radovich, M. et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 6, 1410–1415 (2020). Secondary results from this trial demonstrated that the presence of ctDNA following neoadjuvant chemotherapy in patients with triple-negative breast cancer is predictive of disease recurrence.

    Article 
    PubMed 

    Google Scholar
     

  • Cavallone, L. et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. Sci. Rep. 10, 14704 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Szabados, B. et al. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur. Urol. 82, 212–222 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinsenveld, F. J. et al. Prediction of pathological response following neoadjuvant chemotherapy in patients with muscle-invasive bladder cancer: the PRE-PREVENCYS trial. BMC Cancer 21, 1161 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurvitz, S. A. et al. A careful reassessment of anthracycline use in curable breast cancer. NPJ Breast Cancer 7, 134 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbosh, C. & Swanton, C. ctDNA: an emerging neoadjuvant biomarker in resectable solid tumors. PLoS Med. 18, e1003771 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q.-x et al. The watch-and-wait strategy versus surgical resection for rectal cancer patients with a clinical complete response after neoadjuvant chemoradiotherapy. Radiat. Oncol. 16, 16 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murahashi, S. et al. Serial circulating tumour DNA analysis for locally advanced rectal cancer treated with preoperative therapy: prediction of pathological response and postoperative recurrence. Br. J. Cancer 123, 803–810 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. Serial circulating tumor DNA in predicting and monitoring the effect of neoadjuvant chemoradiotherapy in patients with rectal cancer: a prospective multicenter study. Clin. Cancer Res. 27, 301–310 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khakoo, S. et al. MRI tumor regression grade and circulating tumor DNA as complementary tools to assess response and guide therapy adaptation in rectal cancer. Clin. Cancer Res. 26, 183–192 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borcoman, E. et al. Novel patterns of response under immunotherapy. Ann. Oncol. 30, 385–396 (2019). This review provides a comprehensive overview of the novel response patterns to immunotherapy, related clinical implications, as well as criteria that had been developed (prior to iRESICT) to measure these responses.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y., Wang, Q., Dong, Q., Zhan, L. & Zhang, J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am. J. Cancer Res. 9, 1546–1553 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singla, R. et al. Hyperprogression after Immunotherapy: nivolumab. analysis of imaging findings associated with hyperprogression and tumor growth kinetics. Indian J. Radiol. Imaging 31, 345–349 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017). These guidelines lay the foundation for standardizing solid tumour measurements and definitions for tumour measurements, including objective changes in tumour size when immunotherapy is used.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 4, 717–721 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X.-J., Alu, A., Xiao, Y.-N., Wei, Y.-Q. & Wei, X.-W. Hyperprogression: a novel response pattern under immunotherapy. Clin. Transl. Med. 10, e167 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Understanding hyperprogression in cancer. Cancer Discov. 9, 821 (2019).

  • De La Torre, K., Cohen, E., Loeser, A., Hurlbert, M. & Metastatic Breast Cancer Alliance. Moonshots and metastatic disease: the need for a multi-faceted approach when studying atypical responses. NPJ Breast Cancer 3, 7 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 6, 38 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, Y. et al. The predicting role of circulating tumor DNA landscape in gastric cancer patients treated with immune checkpoint inhibitors. Mol. Cancer 19, 154 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azzi, G. et al. Treatment response monitoring using a tumor-informed circulating tumor DNA test in an advanced triple-negative breast cancer patient: a case report. Case Rep. Oncol. 15, 473–479 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eroglu, Z. et al. Circulating tumor DNA-based molecular residual disease detection for treatment monitoring in advanced melanoma patients. Cancer 129, 1723–1734 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link