May 28, 2024

Precise date for the Laacher See eruption synchronizes the Younger Dryas

  • 1.

    Schmincke, H.-U. in Mantle Plumes (eds Ritter, J. R. R. & Christensen, U. R.) 241–322 (Springer, 2007).

  • 2.

    Schmincke, H.-U., Park, C. & Harms, E. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quat. Int. 61, 61–72 (1999).


    Google Scholar
     

  • 3.

    Lane, C. S., Blockley, S. P. E., Bronk Ramsey, C. & Lotter, A. F. Tephrochronology and absolute centennial scale synchronisation of European and Greenland records for the last glacial to interglacial transition: a case study of Soppensee and NGRIP. Quat. Int. 246, 145–156 (2011).


    Google Scholar
     

  • 4.

    Reinig, F. et al. Towards a dendrochronologically refined date of the Laacher See eruption around 13,000 years ago. Quat. Sci. Rev. 229, 106128 (2020).


    Google Scholar
     

  • 5.

    Brauer, A., Endres, C. & Negendank, J. F. W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 61, 17–25 (1999).


    Google Scholar
     

  • 6.

    Rach, O., Brauer, A., Wilkes, H. & Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109–112 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Baldini, J. U. L., Brown, R. J. & Mawdsley, N. Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Clim. Past 14, 969–990 (2018).


    Google Scholar
     

  • 8.

    Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    ADS 

    Google Scholar
     

  • 10.

    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Holasek, R. E., Self, S. & Woods, A. W. Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes. J. Geophys. Res. 101, 27635–27655 (1996).

    ADS 

    Google Scholar
     

  • 12.

    Baales, M. et al. Impact of the Late Glacial eruption of the Laacher See volcano, central Rhineland, Germany. Quat. Res. 58, 273–288 (2002).


    Google Scholar
     

  • 13.

    van den Bogaard, P. 40Ar/39Ar ages of sanidine phenocrysts from Laacher See tephra (12,900 yr BP): chronostratigraphic and petrological significance. Earth Planet. Sci. Lett. 133, 163–174 (1995).

    ADS 

    Google Scholar
     

  • 14.

    Textor, C., Sachs, P. M., Graf, H.-F. & Hansteen, T. H. The 12 900 years BP Laacher See eruption: estimation of volatile yields and simulation of their fate in the plume. Geol. Soc. Lon. Spec. Pub. 213, 307–328 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Reinig, F. et al. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quat. Sci. Rev. 186, 215–224 (2018).

    ADS 

    Google Scholar
     

  • 16.

    Reinig, F. et al. Introducing anatomical techniques to subfossil wood. Dendrochronologia 52, 146–151 (2018).


    Google Scholar
     

  • 17.

    Schweingruber, F. H. Tree Rings: Basics and Applications of Dendrochronology (Kluwer Academic Publishers, 1988).

  • 18.

    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62 725–757 (2020).

    CAS 

    Google Scholar
     

  • 19.

    Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. & Negendank, J. F. W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Haflidason, H., Sejrup, H. P., Klitgaard Kristensen, D. & Johnsen, S. Coupled response of the late glacial climatic shifts of northwest Europe reflected in Greenland ice cores: evidence from the northern North Sea. Geology 23, 1059–1062 (1995).

    ADS 

    Google Scholar
     

  • 21.

    Hughen, K. A., Southon, J. R., Lehman, S. J. & Overpeck, J. T. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 1951–1955 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992).

    ADS 

    Google Scholar
     

  • 23.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    ADS 

    Google Scholar
     

  • 24.

    Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254 (2013).

    ADS 

    Google Scholar
     

  • 25.

    Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 8939 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Obreht, I. et al. An annually resolved record of Western European vegetation response to Younger Dryas cooling. Quat. Sci. Rev. 231, 106198 (2020).


    Google Scholar
     

  • 27.

    Lohne, Ø. S., Mangerud, J. & Birks, H. H. Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology. J. Quat. Sci. 28, 490–500 (2013).


    Google Scholar
     

  • 28.

    Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).

    ADS 

    Google Scholar
     

  • 29.

    Neugebauer, I. et al. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany. Quat. Sci. Rev. 36, 91–102 (2012).

    ADS 

    Google Scholar
     

  • 30.

    Lotter, A. F., Eicher, U., Siegenthaler, U. & Birks, H. J. B. Late‐glacial climatic oscillations as recorded in Swiss lake sediments. J. Quat. Sci. 7, 187–204 (1992).


    Google Scholar
     

  • 31.

    Merkt, J. & Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quat. Int. 61, 41–59 (1999).


    Google Scholar
     

  • 32.

    Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Adolphi, F. et al. Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Clim. Past 14, 1755–1781 (2018).


    Google Scholar
     

  • 34.

    von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., & Johnsen, S. J. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 284, 1654–1657 (1999).

    ADS 

    Google Scholar
     

  • 35.

    Lauterbach, S. et al. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). J. Quat. Sci. 26, 253–267 (2011).


    Google Scholar
     

  • 36.

    Lohne, Ø. S., Mangerud, J. & Birks, H. H. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J. Quat. Sci. 29, 506–507 (2014).


    Google Scholar
     

  • 37.

    Condron, A. & Winsor, P. Meltwater routing and the Younger Dryas. Proc. Natl Acad. Sci. USA 109, 19928–19933 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Hajdas, I. et al. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP. Clim. Dyn. 9, 107–116 (1993).


    Google Scholar
     

  • 40.

    Wulf, S. et al. Tracing the Laacher See tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quat. Sci. Rev. 76, 129–139 (2013).

    ADS 

    Google Scholar
     

  • 41.

    Park, C. & Schmincke, H.-U. Multistage damming of the Rhine River by tephra fallout during the 12,900 BP Plinian Laacher See Eruption (Germany). Syn-eruptive Rhine damming I. J. Volcanol. Geotherm. Res. 389, 106688 (2020).

    CAS 

    Google Scholar
     

  • 42.

    Waldmann, G. Vulkanfossilien im Laacher Bims (Gregor and Unger, 1996).

  • 43.

    Frechen, J. Die Tuffe des Laacher Vulkangebietes als quartärgeologische Leitgesteine und Zeitmarken. Fortschr. Geol. Rheinl. Westfal. 4, 363–370 (1959).


    Google Scholar
     

  • 44.

    Schweitzer, H.-J. Entstehung und Flora des Trasses im nördlichen Laachersee-Gebiet. E&G Quat. Sci. J. 9, 28–56 (1958).


    Google Scholar
     

  • 45.

    Street, M. Analysis of Late Palaeolithic and Mesolithic Faunal Assemblages in the Northern Rhineland, Germany. PhD thesis, Univ. Birmingham (1993).

  • 46.

    Street, M. Ein Wald der Allerodzeit bei Miesenheim, Stadt Andernach (Neuwieder Becken). Archäologisches Korrespondenzblatt 16, 13–22 (1986).


    Google Scholar
     

  • 47.

    Baales, M., Bittmann, F. & Kromer, B. Verkohlte Bäume im Trass der Laacher See-Tephra bei Kruft (Neuwieder Becken): ein Beitrag zur Datierung des Laacher See-Ereignisses und zur Vegetation der Allerød-Zeit am Mittelrhein. Archäologisches Korrespondenzblatt 28, 191–204 (1998).


    Google Scholar
     

  • 48.

    Brunnacker, K., Fruth, H.-J., Juvigné, E. & Urban, B. Spätpaläolithische Funde aus Thür, Kreis Mayen-Koblenz. Archäologisches Korrespondenzblatt Mainz 12, 417–427 (1982).


    Google Scholar
     

  • 49.

    Rinn, F. TSAP: time series analyses presentation. Reference manual v.3.0 (RinnTech, 1996).

  • 50.

    Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7–13 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Wacker, L. et al. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262 (2010).

    CAS 

    Google Scholar
     

  • 52.

    Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56, 573–579 (2014).

    CAS 

    Google Scholar
     

  • 53.

    Němec, M., Wacker, L. & Gäggeler, H. Optimization of the graphitization process at age-1. Radiocarbon 52, 1380–1393 (2010).


    Google Scholar
     

  • 54.

    Sookdeo, A. et al. Quality dating: a well-defined protocol implemented at ETH for high-precision 14C-dates tested on Late Glacial wood. Radiocarbon 62, 891–899 (2020).

    CAS 

    Google Scholar
     

  • 55.

    Kaiser, K. F. Beiträge zur Klimageschichte vom späten Hochglazial bis ins frühe Holozän: rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten (Ziegler, 1993).

  • 56.

    Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).

    ADS 

    Google Scholar
     

  • 57.

    Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).


    Google Scholar
     

  • 58.

    Bird, M. I. in Encyclopedia of Quaternary Science (ed. Elias S.A.) 353–360 (Elsevier, 2013).

  • 59.

    Holdaway, R. N., Duffy, B. & Kennedy, B. Evidence for magmatic carbon bias in 14C dating of the Taupo and other major eruptions. Nat. Commun. 9, 4110 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Kromer, B., Spurk, M., Remmele, S., Barbetti, M. & Joniello, V. Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring series. Radiocarbon 40, 351–358 (1997).


    Google Scholar
     

  • 61.

    Muschitiello, F. & Wohlfarth, B. Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat. Sci. Rev. 109, 49–56 (2015).


    Google Scholar
     

  • 62.

    Engels, S. et al. Subdecadal-scale vegetation responses to a previously unknown late-Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J. Quat. Sci. 31, 741–752 (2016).


    Google Scholar
     

  • 63.

    Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Svensson, A. et al. Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Clim. Past 16, 1565–1580 (2020).


    Google Scholar
     

  • 65.

    Adolphi, F. & Muscheler, R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records. Clim. Past 12, 15–30 (2016).


    Google Scholar
     

  • 66.

    Adolphi, F. et al. Radiocarbon calibration uncertainties during the last deglaciation: insights from new floating tree-ring chronologies. Quat. Sci. Rev. 170, 98–108 (2017).

    ADS 

    Google Scholar
     

  • 67.

    Muscheler, R., Adolphi, F. & Knudsen, M. F. Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations. Quat. Sci. Rev. 106, 81–87 (2014).

    ADS 

    Google Scholar
     

  • 68.

    Ruth, U., Wagenbach, D., Steffensen, J. P. & Bigler, M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J. Geophys. Res. 108, 4098 (2003).


    Google Scholar
     

  • 69.

    Bigler, M. et al. Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores. Environ. Sci. Technol. 45, 4483–4489 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Mortensen, A. K., Bigler, M., Grönvold, K., Steffensen, J. P. & Johnsen, S. J. Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core. J. Quat. Sci. 20, 209–219 (2005).


    Google Scholar
     

  • 71.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 

    Google Scholar
     

  • 72.

    Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    ADS 

    Google Scholar
     

  • 74.

    Sigl, M. et al. The WAIS Divide deep ice core WD2014 chronology – part 2: annual-layer counting (0–31 ka BP). Clim. Past 12, 769–786 (2016).


    Google Scholar
     

  • 75.

    Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J. & Wansa, S. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalt. Ggw. Quat. Sci. J. 56, 7–65 (2007).


    Google Scholar
     

  • 76.

    Riede, F. Past-forwarding ancient calamities. Pathways for making archaeology relevant in disaster risk reduction research. Humanities 6, 79 (2017).


    Google Scholar
     

  • 77.

    Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172 (2017).

    ADS 

    Google Scholar
     

  • 78.

    Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S. & Twickler, M. S. A. 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quat. Res. 45, 109–118 (1996).

    CAS 

    Google Scholar
     

  • 79.

    Severi, M. et al. Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Clim. Past 3, 367–374 (2007).


    Google Scholar
     

  • Source link