May 30, 2024

Precision tomography of a three-qubit donor quantum processor in silicon – Nature

  • 1.

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).


    Google Scholar
     

  • 2.

    Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).


    Google Scholar
     

  • 3.

    Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    ADS 

    Google Scholar
     

  • 4.

    Filidou, V. et al. Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nat. Phys. 8, 596–600 (2012).

    CAS 

    Google Scholar
     

  • 5.

    Nielsen, E. et al. Gate set tomography. Quantum 5, 557 (2021).


    Google Scholar
     

  • 6.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS 

    Google Scholar
     

  • 7.

    Harvey-Collard, P. et al. Coherent coupling between a quantum dot and a donor in silicon. Nat. Commun. 8, 1029 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Madzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device. Nat. Commun. 12, 181 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Hensen, B. et al. A silicon quantum-dot-coupled nuclear spin qubit. Nat. Nanotechnol. 15, 13–17 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter 27, 154205 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Bradley, C. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. 9, 031045 (2019).

    CAS 

    Google Scholar
     

  • 15.

    Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).

    ADS 

    Google Scholar
     

  • 20.

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Ivie, J. A. et al. Impact of incorporation kinetics on device fabrication with atomic precision. Phys. Rev. Appl. 16, 054037 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Hile, S. J. et al. Addressable electron spin resonance using donors and donor molecules in silicon. Sci. Adv. 4, eaaq1459 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Anandan, J. The geometric phase. Nature 360, 307–313 (1992).

    ADS 

    Google Scholar
     

  • 26.

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    ADS 

    Google Scholar
     

  • 27.

    Dehollain, J. P. et al. Optimization of a solid-state electron spin qubit using gate set tomography. New J. Phys. 18, 103018 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Blume-Kohout, R. et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nat. Commun. 8, 14485 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Xue, X. et al. Benchmarking gate fidelities in a Si/SiGe two-qubit device. Phys. Rev. 9, 021011 (2019).

    CAS 

    Google Scholar
     

  • 31.

    Kimmel, S., da Silva, M. P., Ryan, C. A., Johnson, B. R. & Ohki, T. Robust extraction of tomographic information via randomized benchmarking. Phys. Rev. 4, 011050 (2014).


    Google Scholar
     

  • 32.

    Carignan-Dugas, A., Wallman, J. J. & Emerson, J. Bounding the average gate fidelity of composite channels using the unitarity. New J. Phys. 21, 053016 (2019).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 33.

    Blume-Kohout, R. et al. A taxonomy of small Markovian errors. Preprint at https://arxiv.org/abs/2103.01928 (2021).

  • 34.

    Proctor, T., Rudinger, K., Young, K., Sarovar, M. & Blume-Kohout, R. What randomized benchmarking actually measures. Phys. Rev. Lett. 119, 130502 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 35.

    Novais, E. & Mucciolo, E. R. Surface code threshold in the presence of correlated errors. Phys. Rev. Lett. 110, 010502 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Takeda, K. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 16, 965–969 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Gullans, M. J. & Petta, J. R. Protocol for a resonantly driven three-qubit Toffoli gate with silicon spin qubits. Phys. Rev. B 100, 085419 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Lett. 90, 153001 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Wei, K. X. et al. Verifying multipartite entangled Greenberger–Horne–Zeilinger states via multiple quantum coherences. Phys. Rev. A 101, 032343 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Gross, J. A., Godfrin, C., Blais, A. & Dupont-Ferrier, E. Hardware-efficient error-correcting codes for large nuclear spins. Preprint at https://arxiv.org/abs/2103.08548 (2021).

  • 43.

    Asaad, S. et al. Coherent electrical control of a single high-spin nucleus in silicon. Nature 579, 205–209 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Tosi, G. et al. Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8, 450 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Pica, G., Lovett, B. W., Bhatt, R. N., Schenkel, T. & Lyon, S. A. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings. Phys. Rev. B 93, 035306 (2016).

    ADS 

    Google Scholar
     

  • 46.

    Buonacorsi, B. et al. Network architecture for a topological quantum computer in silicon. Quantum Sci. Technol. 4, 025003 (2019).

    ADS 

    Google Scholar
     

  • 47.

    Tosi, G., Mohiyaddin, F. A., Tenberg, S., Laucht, A. & Morello, A. Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon. Phys. Rev. B 98, 075313 (2018).

    ADS 

    Google Scholar
     

  • 48.

    Mielke, J., Petta, J. R. & Burkard, G. Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system. PRX Quantum 2, 020347 (2021).

    ADS 

    Google Scholar
     

  • 49.

    Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).


    Google Scholar
     

  • 50.

    Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).


    Google Scholar
     

  • 51.

    Adambukulam, C. et al. An ultra-stable 1.5 T permanent magnet assembly for qubit experiments at cryogenic temperatures. Rev. Sci. Instrum. 92, 085106 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Kalra, R. et al. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: characterization, mitigation, and impact on qubit coherence. Rev. Sci. Instrum. 87, 073905 (2016).

    ADS 

    Google Scholar
     

  • 53.

    Dehollain, J. et al. Nanoscale broadband transmission lines for spin qubit control. Nanotechnology 24, 015202 (2012).

    ADS 

    Google Scholar
     

  • 54.

    Feher, G. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Steger, M. et al. Optically-detected NMR of optically-hyperpolarized 31P neutral donors in 28Si. J. Appl. Phys. 109, 102411 (2011).

    ADS 

    Google Scholar
     

  • 56.

    Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Morello, A. et al. Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon. Phys. Rev. B 80, 081307 (2009).

    ADS 

    Google Scholar
     

  • 58.

    Braginsky, V. B. & Khalili, F. Ya. Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 59.

    Joecker, B. et al. Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory. New J. Phys. 23, 073007 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Gamble, J. K. et al. Multivalley effective mass theory simulation of donors in silicon. Phys. Rev. B 91, 235318 (2015).

    ADS 

    Google Scholar
     

  • 61.

    Nielsen, E. et al. Python GST Implementation (PyGSTi) v. 0.9. Technical Report (Sandia National Lab, 2019).

  • 62.

    Nielsen, E. et al. Probing quantum processor performance with pyGSTi. Quantum Sci. Technol. 5, 044002 (2020).

    ADS 

    Google Scholar
     

  • 63.

    Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).

    MATH 

    Google Scholar
     

  • 64.

    Nielsen, E., Rudinger, K., Proctor, T., Young, K. & Blume-Kohout, R. Efficient flexible characterization of quantum processors with nested error models. New J. Phys. 23, 093020 (2021).

    ADS 

    Google Scholar
     

  • 65.

    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike (eds Parzen, E. et al.) 199–213 (Springer, 1998).

  • 66.

    Tenberg, S. B. et al. Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices. Phys. Rev. B 99, 205306 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Hsueh, Y.-L. et al. Spin-lattice relaxation times of single donors and donor clusters in silicon. Phys. Rev. Lett. 113, 246406 (2014).

    ADS 

    Google Scholar
     

  • Source link