May 4, 2024
Probing entanglement in a 2D hard-core Bose–Hubbard lattice – Nature

Probing entanglement in a 2D hard-core Bose–Hubbard lattice – Nature

  • Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Page, D. N. Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishioka, T., Ryu, S. & Takayanagi, T. Holographic entanglement entropy: an overview. J. Phys. A Math. Theor. 42, 504008 (2009).

    Article 
    MathSciNet 

    Google Scholar
     

  • Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Alessio, L., Kafri, Y., Polkovnikov, A. & Rigol, M. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239–362 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neill, C. et al. Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 12, 1037–1041 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Linke, N. M. et al. Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer. Phys. Rev. A 98, 052334 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa, Y. O., Watanabe, M., Fujita, H. & Sugiura, S. Universality in volume-law entanglement of scrambled pure quantum states. Nat. Commun. 9, 1635 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Choi, S., Bao, Y., Qi, X.-L. & Altman, E. Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett. 125, 030505 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bauer, B. & Nayak, C. Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. Theory Exp. 2013, P09005 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Khemani, V., Lim, S. P., Sheng, D. N. & Huse, D. A. Critical properties of the many-body localization transition. Phys. Rev. X 7, 021013 (2017).


    Google Scholar
     

  • Brandão, F. G. S. L. & Horodecki, M. An area law for entanglement from exponential decay of correlations. Nat. Phys. 9, 721–726 (2013).

    Article 

    Google Scholar
     

  • Barthel, T., Chung, M.-C. & Schollwöck, U. Entanglement scaling in critical two-dimensional fermionic and bosonic systems. Phys. Rev. A 74, 022329 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Miao, Q. & Barthel, T. Eigenstate entanglement: crossover from the ground state to volume laws. Phys. Rev. Lett. 127, 040603 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanay, Y., Braumüller, J., Gustavsson, S., Oliver, W. D. & Tahan, C. Two-dimensional hard-core Bose–Hubbard model with superconducting qubits. npj Quantum Inf. 6, 58 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state representations. Quantum Inf. Comput. 7, 401–430 (2007).

    MathSciNet 

    Google Scholar
     

  • Santos, L. F. & Rigol, M. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 81, 036206 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Braumüller, J. et al. Probing quantum information propagation with out-of-time-ordered correlators. Nat. Phys. 18, 172–178 (2022).

    Article 

    Google Scholar
     

  • Plesch, M. & Brukner, Č. Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Saxberg, B. et al. Disorder-assisted assembly of strongly correlated fluids of light. Nature 612, 435–441 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. et al. Emulating many-body localization with a superconducting quantum processor. Phys. Rev. Lett. 120, 050507 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karamlou, A. H. et al. Quantum transport and localization in 1d and 2d tight-binding lattices. npj Quantum Inf. 8, 35 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Kim, E., Mark, D. K., Choi, S. & Painter, O. A superconducting quantum simulator based on a photonic-bandgap metamaterial. Science 379, 278–283 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf. 3, 42 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rényi, A. in Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics Vol. 4.1 (ed. Neyman, J.) 547–562 (Univ. California Press, 1961).

  • Nielsen, M. A & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  • Alba, V. & Calabrese, P. Entanglement and thermodynamics after a quantum quench in integrable systems. Proc. Natl Acad. Sci. 114, 7947–7951 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Lami, L. & Regula, B. No second law of entanglement manipulation after all. Nat. Phys. 19, 184–189 (2023).

    CAS 

    Google Scholar
     

  • Fisher, M. P. A., Khemani, V., Nahum, A. & Vijay, S. Random quantum circuits. Annu. Rev. Condens. Matter Phys. 14, 335–379 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sørensen, A. S. & Mølmer, K. Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Joshi, M. K. et al. Exploring large-scale entanglement in quantum simulation. Nature 624, 539–544 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrett, C. N. et al. Learning-based calibration of flux crosstalk in transmon qubit arrays. Phys. Rev. Appl. 20, 024070 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, C. et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Source link