April 26, 2024
Programmable heating and quenching for efficient thermochemical synthesis – Nature

Programmable heating and quenching for efficient thermochemical synthesis – Nature

  • Bailey, J. E. Periodic operation of chemical reactors: a review. Chem. Eng. Commun. 1, 111–124 (1973).

    Article 

    Google Scholar
     

  • Wolff, J., Papathanasiou, A. G., Kevrekidis, I. G., Rotermund, H. H. & Ertl, G. Spatiotemporal addressing of surface activity. Science 294, 134–137 (2001).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Kevrekidis, I. G., Schmidt, L. D. & Aris, R. Some common features of periodically forced reacting systems. Chem. Eng. Sci. 41, 1263–1276 (1986).

    CAS 
    Article 

    Google Scholar
     

  • Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics 3rd edn (Wiley, 2017).

  • Marin, G. B., Yablonsky, G. S. & Constales, D. Kinetics of Chemical Reactions: Decoding Complexity 2nd edn (Wiley, 2019).

  • Papathanasiou, A. G., Wolff, J., Kevrekidis, I. G., Rotermund, H. H. & Ertl, G. Some twists and turns in the path of improving surface activity. Chem. Phys. Lett. 358, 407–412 (2002).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Calkins, W. H. & Bonifaz, C. Coal flash pyrolysis: 5. Pyrolysis in an atmosphere of methane. Fuel 63, 1716–1719 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Hao, J. et al. Enhanced methane conversion to olefins and aromatics by H-donor molecules under nonoxidative condition. ACS Catal. 9, 9045–9050 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Sakbodin, M., Wu, Y., Oh, S. C., Wachsman, E. D. & Liu, D. Hydrogen-permeable tubular membrane reactor: promoting conversion and product selectivity for non-oxidative activation of methane over an Fe@SiO2 catalyst. Angew. Chem. Int. Ed. 55, 16149–16152 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Šot, P. et al. Non-oxidative methane coupling over silica versus silica-supported iron(II) single sites. Chem. Eur. J. 26, 8012–8016 (2020).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Overgrowth of lamellar silicalite-1 on MFI and BEA zeolites and its consequences on non-oxidative methane aromatization reaction. Microporous Mesoporous Mater. 263, 1–10 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Liu, L. et al. Methane dehydroaromatization on Mo/HMCM-22 catalysts: Effect of SiO2/Al2O3 ratio of HMCM-22 zeolite supports. Catal. Lett. 108, 25–30 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Promotional effects of In on non-oxidative methane transformation over Mo-ZSM-5. Catal. Lett. 146, 1903–1909 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Aboul-Gheit, A. K., Awadallah, A. E., Aboul-Enein, A. A. & Mahmoud, A.-L. H. Molybdenum substitution by copper or zinc in H-ZSM-5 zeolite for catalyzing the direct conversion of natural gas to petrochemicals under non-oxidative conditions. Fuel 90, 3040–3046 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Bajec, D., Kostyniuk, A., Pohar, A. & Likozar, B. Micro-kinetics of non-oxidative methane coupling to ethylene over Pt/CeO2 catalyst. Chem. Eng. J. 396, 125182 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xie, P. et al. Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8, 4044–4048 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xiao, Y. & Varma, A. Highly selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts. ACS Catal. 8, 2735–2740 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Butland, A. T. D. & Maddison, R. J. The specific heat of graphite: an evaluation of measurements. J. Nucl. Mater. 49, 45–56 (1973).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Bao, W. et al. Flexible, high temperature, planar lighting with large scale printable nanocarbon paper. Adv. Mater. 28, 4684–4691 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Van Geem, K. M., Galvita, V. V. & Marin, G. B. Making chemicals with electricity. Science 364, 734–735 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wismann, S. T. et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Bai, Z., Chen, H., Li, B. & Li, W. Catalytic decomposition of methane over activated carbon. J. Anal. Appl. Pyrolysis 73, 335–341 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Gao, Z., Kobayashi, M., Wang, H., Onoe, K. & Yamaguchi, T. Methane conversion in thermal diffusion column reactor with carbon rod as pyrogen. Fuel Process. Technol. 88, 996–1001 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Wang, Y., Chen, T.-Y. & Vlachos, D. NEXTorch: a design and Bayesian optimization toolkit for chemical sciences and engineering. J. Chem. Inf. Model. 61, 5312–5319 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002).

  • Yablonsky, G. S., Constales, D. & Marin, G. B. Equilibrium relationships for non-equilibrium chemical dependencies. Chem. Eng. Sci. 66, 111–114 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Silva, G. D. Mystery of 1-vinylpropargyl formation from acetylene addition to the propargyl radical: an open-and-shut case. J. Phys. Chem. A 121, 2086–2095 (2017).

    Article 

    Google Scholar
     

  • Mansurov, Z. A. Soot formation in combustion processes. Combust. Explos. Shock Waves 41, 727–744 (2005).

    Article 

    Google Scholar
     

  • Saadatjou, N., Jafari, A. & Sahebdelfar, S. Ruthenium nanocatalysts for ammonia synthesis: a review. Chem. Eng. Commun. 202, 420–448 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Qin, R. et al. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 3, 703–709 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Dahl, S., Sehested, J., Jacobsen, C. J. H., Törnqvist, E. & Chorkendorff, I. Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts. J. Catal. 192, 391–399 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Bowker, M., Parker, I. B. & Waugh, K. C. Extrapolation of the kinetics of model ammonia synthesis catalysts to industrially relevant temperatures and pressures. Appl. Catal. 14, 101–118 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Wu, L., Hu, S., Yu, W., Shen, S. & Li, T. Stabilizing mechanism of single-atom catalysts on a defective carbon surface. NPJ Comput. Mater. 6, 1–8 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Özçelik, V. O., Gurel, H. H. & Ciraci, S. Self-healing of vacancy defects in single-layer graphene and silicene. Phys. Rev. B 88, 045440 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Gong, Y. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 1, 178–185 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Shi, M.-M. et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 29, 1606550 (2017).

    Article 

    Google Scholar
     

  • Dong, Q. et al. Active learning for programmable heating and quenching. Code Ocean https://doi.org/10.24433/CO.1790371.v1 (2021).

  • Source link