May 19, 2024

Programmable RNA targeting with the single-protein CRISPR effector Cas7-11 – Nature

  • 1.

    Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Wang, Q. et al. The CRISPR–Cas13a gene‐editing system induces collateral cleavage of RNA in glioma cells. Adv. Sci. 1, 1901299 (2019).

    Article 

    Google Scholar
     

  • 5.

    Wang, L., Zhou, J., Wang, Q., Wang, Y. & Kang, C. Rapid design and development of CRISPR–Cas13a targeting SARS-CoV-2 spike protein. Theranostics 11, 649–664 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60, 385–397 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Samai, P. et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR–Cas immunity. Cell 161, 1164–1174 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Staals, R. H. J. et al. RNA targeting by the type III-A CRISPR–Cas Csm complex of Thermus thermophilus. Mol. Cell 56, 518–530 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Tamulaitis, G. et al. Programmable RNA shredding by the type III-A CRISPR–Cas system of Streptococcus thermophilus. Mol. Cell 56, 506–517 (2014).

    Article 

    Google Scholar
     

  • 10.

    Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139, 945–956 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article 

    Google Scholar
     

  • 12.

    East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Anantharaman, V., Makarova, K. S., Burroughs, A. M., Koonin, E. V. & Aravind, L. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8, 15 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327–339.e5 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618–630.e7 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR–Cas13. Science 360, 444–448 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Abudayyeh, O. O., Gootenberg, J. S., Kellner, M. J. & Zhang, F. nucleic acid detection of plant genes using CRISPR–Cas13. CRISPR J. 2, 165–171 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Koonin, E. V. & Zhang, F. Coupling immunity and programmed cell suicide in prokaryotes: life-or-death choices. Bioessays 39, 1–9 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).

    Article 

    Google Scholar
     

  • 27.

    Silas, S. et al. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein. Science 351, aad4234 (2016).

    Article 

    Google Scholar
     

  • 28.

    Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8, e01397-17 (2017).

    Article 

    Google Scholar
     

  • 29.

    Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Putzbach, W. et al. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism. eLife 6, e29702 (2017).

    Article 

    Google Scholar
     

  • 31.

    Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 

    Google Scholar
     

  • 32.

    Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).

    Article 

    Google Scholar
     

  • 33.

    Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Edgar, R. C. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinf. 8, 18 (2007).

    Article 

    Google Scholar
     

  • 35.

    Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article 

    Google Scholar
     

  • 38.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 

    Google Scholar
     

  • Source link