May 28, 2024
Promoting active site renewal in heterogeneous olefin metathesis catalysts – Nature

Promoting active site renewal in heterogeneous olefin metathesis catalysts – Nature

  • Copéret, C. et al. Olefin metathesis: what have we learned about homogeneous and heterogeneous catalysts from surface organometallic chemistry? Chem. Sci. 12, 3092–3115 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A., Sengupta, D. & El-Halwagi, M. Sustainable process design approach for on-purpose propylene production and intensification. ACS Sustainable Chem. Eng. 6, 2407–2421 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Carr, C. Global Propylene Market http://cdn.ihs.com/www/pdf/asia-chem-conf/Carr.pdf (2014).

  • Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jean‐Louis Hérisson, P. & Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d’oléfines acycliques. Makromol. Chem. Macromol. Chem. Phys. 141, 161–176 (1971).

    Article 

    Google Scholar
     

  • Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amakawa, K. et al. In situ generation of active sites in olefin metathesis. J. Am. Chem. Soc. 134, 11462–11473 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lwin, S. & Wachs, I. E. Olefin metathesis by supported metal oxide catalysts. ACS Catal. 4, 2505–2520 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Howell, J. G., Li, Y.-P. & Bell, A. T. Propene metathesis over supported tungsten oxide catalysts: a study of active site formation. ACS Catal. 6, 7728–7738 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Handzlik, J., Kurleto, K. & Gierada, M. Computational insights into active site formation during alkene metathesis over a MoOx/SiO2 catalyst: the role of surface silanols. ACS Catal. https://doi.org/10.1021/acscatal.1c03912 (2021).

  • Mougel, V. et al. Low temperature activation of supported metathesis catalysts by organosilicon reducing agents. ACS Cent. Sci. 2, 569–576 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, K. et al. Highly efficient activation, regeneration, and active site identification of oxide-based olefin metathesis catalysts. ACS Catal. 6, 5740–5746 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Michorczyk, P., Węgrzyniak, A., Węgrzynowicz, A. & Handzlik, J. Simple and efficient way of molybdenum oxide-based catalyst activation for olefins metathesis by methane pretreatment. ACS Catal. 9, 11461–11467 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lwin, S. & Wachs, I. E. Catalyst activation and kinetics for propylene metathesis by supported WOx/SiO2 catalysts. ACS Catal. 7, 573–580 (2016).

    Article 

    Google Scholar
     

  • Zhao, P. et al. Entrapped single tungstate site in zeolite for cooperative catalysis of olefin metathesis with Brønsted acid site. J. Am. Chem. Soc. 140, 6661–6667 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Copéret, C. Single-sites and nanoparticles at tailored interfaces prepared via surface organometallic chemistry from thermolytic molecular precursors. Acc. Chem. Res. 52, 1697–1708 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Poater, A., Solans-Monfort, X., Clot, E., Coperet, C. & Eisenstein, O. Understanding d0-olefin metathesis catalysts: which metal, which ligands? J. Am. Chem. Soc. 129, 8207–8216 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luckner, R. C. & Wills, G. B. Transient kinetics of the disproportionation of propylene over a tungsten oxide on silica catalyst. J. Catal. 28, 83–91 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Pennella, F. & Banks, R. L. The influence of chelating polyolefins on the disproportionation of propylene catalyzed by WO3 on silica. J. Catal. 31, 304–308 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, A. K., Choi, T.-L., Sanders, D. P. & Grubbs, R. H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc. 125, 11360–11370 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, K. W., Mance, D., Safonova, O. V. & Copéret, C. Well-defined silica-supported tungsten (IV)–oxo complex: olefin metathesis activity, initiation, and role of Brønsted acid sites. J. Am. Chem. Soc. 141, 18286–18292 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amakawa, K., Wang, Y., Kröhnert, J., Schlögl, R. & Trunschke, A. Acid sites on silica-supported molybdenum oxides probed by ammonia adsorption: experiment and theory. Mol. Catal. 478, 110580 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gabrienko, A. A. et al. Direct measurement of zeolite Brønsted acidity by FTIR spectroscopy: solid-state 1H MAS NMR approach for reliable determination of the integrated molar absorption coefficients. J. Phys. Chem. C 122, 25386–25395 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gangwal, S. K. & Wills, G. B. Effects of ammonia and amines on propylene disproportionation over a tungsten oxide silica catalyst. J. Catal. 52, 539–541 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Van Roosmalen, A. & Mol, J. Active centers for the metathesis and isomerization of alkenes on tungsten-oxide/silica catalysts. J. Catal. 78, 17–23 (1982).

    Article 

    Google Scholar
     

  • Freundlich, J. S., Schrock, R. R., Cummins, C. C. & Davis, W. M. Organometallic complexes of tantalum that contain the triamidoamine ligand, [(Me3SiNCH2CH2)3N]3-, including an ethylidene complex formed via a phosphine-catalyzed rearrangement of an ethylene complex. J. Am. Chem. Soc. 116, 6476–6477 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Hirsekorn, K. F. et al. Thermodynamics, kinetics, and mechanism of (silox) 3M (olefin) to (silox) 3M (alkylidene) rearrangements (silox=tBu3SiO; M=Nb, Ta). J. Am. Chem. Soc. 127, 4809–4830 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S., Boudjelel, M., Schrock, R. R., Conley, M. P. & Tsay, C. Interconversion of molybdenum or tungsten d2 styrene complexes with d0 1-phenethylidene analogues. J. Am. Chem. Soc. 143, 17209–17218 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, J. W., Schrock, R. R. & Tsay, C. Molybdenum disubstituted alkylidene complexes. Organometallics 39, 658–661 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, K. et al. Silica-supported isolated molybdenum di-oxo species: formation and activation with organosilicon agent for olefin metathesis. Chem. Commun. 54, 3989–3992 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gioffrè, D., Rochlitz, L., Payard, P.-A., Yakimov, A. & Copéret, C. Grafting of group-10 organometallic complexes on silicas: differences and similarities, surprises and rationale. Helv. Chim. Acta 105, e202200073 (2022).

    Article 

    Google Scholar
     

  • Ross-Medgaarden, E. I. & Wachs, I. E. Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and Raman spectroscopy. J. Phys. Chem. C 111, 15089–15099 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Moodley, D., van Schalkwyk, C., Spamer, A., Botha, J. & Datye, A. Coke formation on WO3/SiO2 metathesis catalysts. Appl. Catal., A 318, 155–159 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Weisz, P. & Prater, C. Interpretation of measurements in experimental catalysis. Adv. Catal 6, 60390–60399 (1954).


    Google Scholar
     

  • Mears, D. E. Tests for transport limitations in experimental catalytic reactors. Ind. Eng. Chem. Process Des. Dev. 10, 541–547 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Ishii, Y., Yesinowski, J. P. & Tycko, R. Sensitivity enhancement in solid-state 13C NMR of synthetic polymers and biopolymers by 1H NMR detection with high-speed magic angle spinning. J. Am. Chem. Soc. 123, 2921–2922 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatesh, A., Hanrahan, M. P. & Rossini, A. J. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. Solid State Nucl. Magn. Reson. 84, 171–181 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkmann, A. & Kentgens, A. P. Proton-selective 17O–H distance measurements in fast magic-angle-spinning solid-state NMR spectroscopy for the determination of hydrogen bond lengths. J. Am. Chem. Soc. 128, 14758–14759 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatesh, A., Perras, F. A. & Rossini, A. J. Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy. J. Magn. Reson. 327, 106983 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noh, G. et al. Lewis acid strength of interfacial metal sites drives CH3OH selectivity and formation rates on Cu‐based CO2 hydrogenation. Catalysts. Angew. Chem. Int. Ed. 60, 9650–9659 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Goldsmith, B. R., Sanderson, E. D., Bean, D. & Peters, B. Isolated catalyst sites on amorphous supports: a systematic algorithm for understanding heterogeneities in structure and reactivity. J. Chem. Phys. 138, 204105 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Khan, S. A., Vandervelden, C. A., Scott, S. L. & Peters, B. Grafting metal complexes onto amorphous supports: from elementary steps to catalyst site populations via kernel regression. Reaction Chem. Eng. 5, 66–76 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Praveen, C. S., Borosy, A. P., Copéret, C. & Comas-Vives, A. Strain in silica-supported Ga(III) sites: neither too much nor too little for propane dehydrogenation catalytic activity. Inorg. Chem. 60, 6865–6874 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapteijn, F., Bredt, H. L., Homburg, E. & Mol, J. C. Kinetics of the metathesis of propene over dirhenium heptaoxide. gamma.-aluminum oxide. Ind. Eng. Chem. Prod. Res. Dev. 20, 457–466 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, C. P., Andersen, R. A. & Copéret, C. Metal olefin complexes: revisiting the Dewar−Chatt−Duncanson model and deriving reactivity patterns from carbon-13 NMR chemical shift. Helv. Chim. Acta 102, e1900151 (2019).

    Article 

    Google Scholar
     

  • Goldsmith, B. R., Peters, B., Johnson, J. K., Gates, B. C. & Scott, S. L. Beyond ordered materials: understanding catalytic sites on amorphous solids. ACS Catal. 7, 7543–7557 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73–78 (2012).

    CAS 

    Google Scholar
     

  • Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1327 (2018).


    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrae, D., Haeussermann, U., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S. Supramolecular binding thermodynamics by dispersion‐corrected density functional theory. Chem. Eur. J. 18, 9955–9964 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoychev, G. L., Auer, A. A. & Neese, F. Automatic generation of auxiliary basis sets. J. Chem. Theory Comput. 13, 554–562 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker, J. An algorithm for the location of transition states. J. Comput. Chem. 7, 385–395 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Barton, D. G., Shtein, M., Wilson, R. D., Soled, S. L. & Iglesia, E. Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630–640 (1999).

    Article 
    CAS 

    Google Scholar
     

  • McMillan, P. F. & Remmele, R. L. Hydroxyl sites in SiO2 glass: a note on infrared and Raman spectra. Am. Mineral. 71, 772–778 (1986).

    CAS 

    Google Scholar
     

  • Moroz, I. B., Larmier, K., Liao, W.-C. & Copéret, C. Discerning γ-alumina surface sites with nitrogen-15 dynamic nuclear polarization surface enhanced NMR spectroscopy of adsorbed pyridine. J. Phys. Chem. C 122, 10871–10882 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Source link