May 26, 2024
Pseudospin-selective Floquet band engineering in black phosphorus – Nature

Pseudospin-selective Floquet band engineering in black phosphorus – Nature

  • Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009).


    Google Scholar
     

  • Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).


    Google Scholar
     

  • Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    CAS 

    Google Scholar
     

  • Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    CAS 

    Google Scholar
     

  • Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    CAS 

    Google Scholar
     

  • Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979 (1965).


    Google Scholar
     

  • Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).


    Google Scholar
     

  • Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).

    CAS 

    Google Scholar
     

  • Weber, C. P. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys. 129, 070901 (2021).

    CAS 

    Google Scholar
     

  • de la Torre, A. et al. Colloquium: Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).


    Google Scholar
     

  • Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021).


    Google Scholar
     

  • Wang, Y., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    CAS 

    Google Scholar
     

  • McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    CAS 

    Google Scholar
     

  • Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    CAS 

    Google Scholar
     

  • Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    CAS 

    Google Scholar
     

  • Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    CAS 

    Google Scholar
     

  • Katan, Y. T. & Podolsky, D. Modulated Floquet topological insulators. Phys. Rev. Lett. 110, 016802 (2013).


    Google Scholar
     

  • De Giovannini, U., Hübener, H. & Rubio, A. Monitoring electron-photon dressing in WSe2. Nano Lett. 16, 7993–7998 (2016).


    Google Scholar
     

  • Claassen, M., Jia, C., Moritz, B. & Devereaux, T. P. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nat. Commun. 7, 13074 (2016).

    CAS 

    Google Scholar
     

  • Zhang, X.-X., Ong, T. T. & Nagaosa, N. Theory of photoinduced Floquet Weyl semimetal phases. Phys. Rev. B 94, 235137 (2016).


    Google Scholar
     

  • Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College, 1976).

  • Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).


    Google Scholar
     

  • Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-II Weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106(R) (2016).


    Google Scholar
     

  • Yan, Z. & Wang, Z. Tunable Weyl points in periodically driven nodal line semimetals. Phys. Rev. Lett. 117, 087402 (2016).


    Google Scholar
     

  • Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).


    Google Scholar
     

  • Park, S. et al. Steady Floquet–Andreev states in graphene Josephson junctions. Nature 603, 421–426 (2022).

    CAS 

    Google Scholar
     

  • Aeschlimann, S. et al. Survival of Floquet–Bloch states in the presence of scattering. Nano Lett. 21, 5028–5035 (2021).

    CAS 

    Google Scholar
     

  • Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277–281 (2020).

    CAS 

    Google Scholar
     

  • Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).


    Google Scholar
     

  • Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    CAS 

    Google Scholar
     

  • Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    CAS 

    Google Scholar
     

  • Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    CAS 

    Google Scholar
     

  • Nurmamat, M. et al. Prolonged photo-carriers generated in a massive-and-anisotropic Dirac material. Sci. Rep. 8, 9073 (2018).


    Google Scholar
     

  • Chen, Z. et al. Band gap renormalization, carrier multiplication, and Stark broadening in photoexcited black phosphorus. Nano Lett. 19, 488–493 (2018).


    Google Scholar
     

  • Roth, S. et al. Photocarrier-induced band-gap renormalization and ultrafast charge dynamics in black phosphorus. 2D Mater. 6, 031001 (2019).

    CAS 

    Google Scholar
     

  • Chen, Z. et al. Spectroscopy of buried states in black phosphorus with surface doping. 2D Mater. 7, 035027 (2020).

    CAS 

    Google Scholar
     

  • Hedayat, H. et al. Non-equilibrium band broadening, gap renormalization and band inversion in black phosphorus. 2D Mater. 8, 025020 (2021).

    CAS 

    Google Scholar
     

  • Kremer, G. et al. Ultrafast dynamics of the surface photovoltage in potassium-doped black phosphorus. Phys. Rev. B 104, 035125 (2021).

    CAS 

    Google Scholar
     

  • Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955).


    Google Scholar
     

  • Seah, M. P. & Dench, W. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).

    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS 

    Google Scholar
     

  • Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    CAS 

    Google Scholar
     

  • Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).


    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS 

    Google Scholar
     

  • Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).


    Google Scholar
     

  • Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    CAS 
    MATH 

    Google Scholar
     

  • Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    CAS 
    MATH 

    Google Scholar
     

  • Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012).

    CAS 

    Google Scholar
     

  • Source link