May 5, 2024
Quantum-enhanced sensing on optical transitions through finite-range interactions – Nature

Quantum-enhanced sensing on optical transitions through finite-range interactions – Nature

  • Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

  • McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, G., Puri, R. & Singh, R. Atomic Schrödinger cat states. Phys. Rev. A 56, 2249 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F. & Roscilde, T. Multipartite entangled states in dipolar quantum simulators. Phys. Rev. Lett. 129, 150503 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev, A 46, R6797 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norcia, M. A. et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361, 259–262 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F. & Roscilde, T. Robust spin squeezing from the tower of states of U(1)-symmetric spin Hamiltonians. Phys. Rev. A 105, 022625 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Young, J. T., Muleady, S. R., Perlin, M. A., Kaufman, A. M. & Rey, A. M. Enhancing spin squeezing using soft-core interactions. Phys. Rev. Res. 5, L012033 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Block, M. et al. A universal theory of spin squeezing. Preprint at https://arxiv.org/abs/2301.09636 (2023).

  • Pezzé, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tscherbul, T. V., Ye, J. & Rey, A. M. Robust nuclear spin entanglement via dipolar interactions in polar molecules. Phys. Rev. Lett. 130, 143002 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Foss-Feig, M., Gong, Z.-X., Gorshkov, A. V., and Clark, C. W. Entanglement and spin-squeezing without infinite-range interactions. Preprint at https://arxiv.org/abs/1612.07805 (2016).

  • Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kranzl, F. et al. Controlling long ion strings for quantum simulation and precision measurements. Phys. Rev. A 105, 052426 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Springer, 1989).

  • Qiao, M. et al. Observing frustrated quantum magnetism in two-dimensional ion crystals. Preprint at https://arxiv.org/abs/2204.07283 (2022).

  • Kiesenhofer, D. et al. Controlling two-dimensional Coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 4, 020317 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Itano, W. M. et al. Bragg diffraction from crystallized ion plasmas. Science 279, 686–689 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Preprint at https://arxiv.org/abs/2303.08053 (2023)

  • Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in a programmable optical clock. Preprint at https://arxiv.org/abs/2303.08078 (2023).

  • Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, Y. C., Xu, Z. F., Jin, G. R. & You, L. Spin squeezing: transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    CAS 

    Google Scholar
     

  • Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Preprint at https://arxiv.org/abs/2303.08805 (2023).

  • Joshi, M. K. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science 376, 720–724 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, S.-L., Monroe, C. & Duan, L.-M. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, C. F. J. Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14, 1261–1295 (1986).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Foss-Feig, M., Hazzard, K. R. A., Bollinger, J. J. & Rey, A. M. Nonequilibrium dynamics of arbitrary-range Ising models with decoherence: an exact analytic solution. Phys. Rev. A 87, 042101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schachenmayer, J., Pikovski, A. & Rey, A. M. Many-body quantum spin dynamics with Monte Carlo trajectories on a discrete phase space. Phys. Rev. X 5, 011022 (2015).


    Google Scholar
     

  • Zhu, B. H., Rey, A. M. & Schachenmayer, J. A generalized phase space approach for solving quantum spin dynamics. New J. Phys. 21, 082001 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Huber, J., Rey, A. M. & Rabl, P. Realistic simulations of spin squeezing and cooperative coupling effects in large ensembles of interacting two-level systems. Phys. Rev. A 105, 013716 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Muleady, S. R., Yang, M., White, S. R. & Rey, A. M. Validating phase-space methods with tensor networks in two-dimensional spin models with power-law interactions. Preprint at https://arxiv.org/abs/2305.17242 (2023).

  • Gardiner, C. W. Stochastic Methods: A Handbook for the Natural and Social Sciences 4th edn (ed. Haken, H.) (Springer, 2009).

  • Roscilde, T., Comparin, T. & Mezzacapo, F. Entangling dynamics from effective rotor/spin-wave separation in U(1)-symmetric quantum spin models. Preprint at https://arxiv.org/abs/2302.09271 (2023).

  • Roscilde, T., Comparin, T. & Mezzacapo, F. Rotor/spin-wave theory for quantum spin models with U(1) symmetry. Preprint at https://arxiv.org/abs/2303.00380 (2023).

  • Source link