May 6, 2024
Remote detection of a lunar granitic batholith at Compton–Belkovich – Nature

Remote detection of a lunar granitic batholith at Compton–Belkovich – Nature

  • Pitcher, W. S. The Nature and Origin of Granite (Springer Science & Business Media, 1997).

  • Seddio, S. M., Korotev, R. L., Jolliff, B. L. & Wang, A. Silica polymorphs in lunar granite: implications for granite petrogenesis on the Moon. Am. Mineral. 100, 1533–1543 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Siegler, M. A. et al. Lunar heat flow: global predictions and reduced heat flux. J. Geophys. Res. Planets https://doi.org/10.1029/2022JE007182 (2022).

  • Langseth, M. G., Keihm, S. J. & Peters, K. Revised lunar heat-flow values. In Proc. Lunar and Planetary Science Conference Vol. 7, 3143–3171 (Lunar and Planetary Institute, 1976).

  • Glotch, T. D. et al. Highly silicic compositions on the Moon. Science 329, 1510–1513 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence, D. J. et al. High resolution measurements of absolute thorium abundances on the lunar surface. Geophys. Res. Lett. 26, 2681–2684 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lawrence, D. J. et al. Small‐area thorium features on the lunar surface. J. Geophys. Res. Planets https://doi.org/10.1029/2003JE002050 (2003).

  • Hagerty, J. J. et al. Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon. J. Geophys. Res. Planets https://doi.org/10.1029/2005JE002592 (2006).

  • Wilson, J. T. et al. Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton–Belkovich Volcanic Complex. J. Geophys. Res. Planets 120, 92–108 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jolliff, B. L. et al. Compton–Belkovich: nonmare, silicic volcanism on the Moon’s far side. In Proc. 42nd Annual Lunar and Planetary Science Conference 1608, 2224 (Lunar and Planetary Institute, 2011).

  • Jolliff, B. L. et al. Non-mare silicic volcanism on the lunar farside at Compton–Belkovich. Nat. Geosci. 4, 566–571 (2011b).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jolliff, B. L. et al. Compton–Belkovich Volcanic Complex. In Proc. Lunar and Planetary Science Conference 1659, 2097 (Lunar and Planetary Institute, 2012).

  • Clegg-Watkins, R. N. et al. Nonmare volcanism on the Moon: photometric evidence for the presence of evolved silicic materials. Icarus 285, 169–184 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chauhan, M., Bhattacharya, S., Saran, S., Chauhan, P. & Dagar, A. Compton–Belkovich Volcanic Complex (CBVC): an ash flow caldera on the Moon. Icarus 253, 115–129 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Head, J. W. & Wilson, L. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 2: predicted emplacement processes and observation). Icarus 283, 176–223 (2017).

    Article 
    ADS 

    Google Scholar
     

  • del Potro, R., Díez, M., Blundy, J., Camacho, A. G. & Gottsmann, J. Diapiric ascent of silicic magma beneath the Bolivian Altiplano. Geophys. Res. Lett. 40, 2044–2048 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, L. & Head, J. W. Explosive volcanism associated with the silicic Compton–Belkovich volcanic complex: implications for magma water content. In Proc. 47th Lunar and Planetary Science Conference 1564 (Lunar and Planetary Institute, 2016).

  • Feng, J., Siegler, M. A. & Hayne, P. O. New constraints on thermal and dielectric properties of lunar regolith from LRO diviner and CE‐2 microwave radiometer. J. Geophys. Res. Planets https://doi.org/10.1029/2019JE006130 (2020).

  • Siegler, M. A. et al. Lunar titanium and frequency‐dependent microwave loss tangent as constrained by the Chang’e‐2 MRM and LRO diviner lunar radiometers. J. Geophys. Res. Planets https://doi.org/10.1029/2020JE006405 (2020).

  • Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegler, M. A. & Smrekar, S. E. Lunar heat flow: regional prospective of the Apollo landing sites. J. Geophys. Res. Planets 119, 47–63 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Seddio, S. M., Jolliff, B. L., Korotev, R. L. & Carpenter, P. K. Thorite in an Apollo 12 granite fragment and age determination using the electron microprobe. Geochim. Cosmochim. Acta 135, 307–320 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ryder, G. & Martinez, R. R. Evolved hypabyssal rocks from station 7, Apennine Front, Apollo 15. In Proc. Lunar and Planetary Science Vol. 21, 749 (Lunar and Planetary Institute, 1991).

  • Warren, P. H., Taylor, G. J. & Keil, K. Regolith breccia Allan Hills A81005: evidence of lunar origin, and petrography of pristine and nonpristine clasts. Geophys. Res. Lett. 10, 779–782 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seddio, S. M., Jolliff, B. L., Korotev, R. L. & Zeigler, R. A. Petrology and geochemistry of lunar granite 12032, 366-19 and implications for lunar granite petrogenesis. Am. Mineral. 98, 1697–1713 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goossens, S. et al. High‐resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust. J. Geophys. Res. Planets 125, e2019JE006086 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kiefer, W. S., Macke, R. J., Britt, D. T., Irving, A. J. & Consolmagno, G. J. The density and porosity of lunar rocks. Geophys. Res. Lett. 39, L07201 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gillis, J. J. et al. The Compton–Belkovich region of the Moon: remotely sensed observations and lunar sample association. In Proc. Lunar and Planetary Science Conference (Lunar and Planetary Institute, 2002).

  • Laneuville, M. et al. A long-lived lunar dynamo powered by core crystallization. Earth Planet. Sci. Lett. 401, 251–260 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Neal, C. R. & Taylor, L. A. The nature and barium partitioning between immiscible melts—a comparison of experimental and natural systems with reference to lunar granite petrogenesis. In Proc. Lunar and Planetary Science Conference Vol. 19, 209–218 (Lunar and Planetary Institute, 1989).

  • Fagan, T. J., Kashima, D., Wakabayashi, Y. & Suginohara, A. Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite. Geochim. Cosmochim. Acta 133, 97–127 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rutherford, M. J., Hess, P. C., Ryerson, F. J., Campbell, H. W. & Dick, P. A. The chemistry, origin and petrogenetic implications of lunar granite and monzonite. In Proc. Lunar and Planetary Science Conference Vol. 7, 1723–1740 (Lunar and Planetary Institute, 1976).

  • Ryder, G., Stoeser, D. B., Marvin, U. B. & Bower, J. F. Lunar granites with unique ternary feldspars. In Proc. Lunar and Planetary Science Conference Vol. 6, 435–449 (Lunar and Planetary Institute, 1975).

  • Hess, P. C., Horzempa, P. & Rutherford, M. J. Fractionation of Apollo 15 KREEP basalts. In Proc. Lunar and Planetary Science Conference Vol. 20 (Lunar and Planetary Institute, 1989).

  • Marvin, U. B., Lindstrom, M. M., Holmberg, B. B. & Martinez, R. R. New observations on the quartz monzodiorite-granite suite. In Proc. Lunar and Planetary Science Conference Vol. 21, 119–135 (Lunar and Planetary Institute, 1991).

  • Gullikson, A. L., Hagerty, J. J., Reid, M. R., Rapp, J. F. & Draper, D. S. Silicic lunar volcanism: testing the crustal melting model. Am. Mineral. 101, 2312–2321 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Warren, P. H. & Wasson, J. T. The origin of KREEP. Rev. Geophys. 17, 73–88 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, S. R. & McLennan, S. Planetary Crusts: Their Composition, Origin and Evolution Vol. 10 (Cambridge Univ. Press., 2009); https://doi.org/10.1017/CBO9780511575358.

  • Neal, C. R. et al. The Lunar Geophysical Network (LGN) is critical for Solar System science and human exploration. In Proc. Lunar and Planetary Science Conference 2355 (Lunar and Planetary Institute, 2020).

  • Zheng, Y. et al. First microwave map of the Moon with Chang’e-1 data: the role of local time in global imaging. Icarus 219, 194–210 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fa, W. & Jin, Y.-Q. A primary analysis of microwave brightness temperature of lunar surface from Chang-e 1 multi-channel radiometer observation and inversion of regolith layer thickness. Icarus 207, 605–615 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gong, X., Paige, D. A., Siegler, M. A. & Jin, Y.-Q. Inversion of dielectric properties of the lunar regolith media with temperature profiles using Chang’e microwave radiometer observations. IEEE Trans. Geosci. Remote Sens. 12, 384–388 (2014).

    Article 

    Google Scholar
     

  • Hu, G.-P., Chan, K. L., Zheng, Y.-C. & Xu, A.-A. A rock model for the cold and hot spots in the Chang’e microwave brightness temperature map. IEEE Trans. Geosci. Remote Sens. 56, 5471–5480 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wei, G., Byrne, S., Li, X. & Hu, G. Lunar surface and buried rock abundance retrieved from Chang’e-2 microwave and diviner data. Planet. Sci. J. 1, 56 (2020).

    Article 

    Google Scholar
     

  • Wei, G., Li, X. & Wang, S. Inversions of subsurface temperature and thermal diffusivity on the Moon based on high frequency of Chang’e-1 microwave radiometer data. Icarus 275, 97–106 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siegler, M. & Feng, J. Microwave remote sensing of lunar subsurface temperatures: reconciling Chang’e MRM and LRO diviner. In Proc. Lunar and Planetary Science Conference 1705 (Lunar and Planetary Institute, 2017).

  • Fang, T. & Fa, W. High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang’e-2 microwave radiometer. Icarus 232, 34–53 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Meng, Z. et al. Passive microwave probing mare basalts in mare Imbrium using CE-2 CELMS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 3097–3104 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wei, G., Li, X. & Wang, S. Thermal behavior of regolith at cold traps on the Moon’s south pole: revealed by Chang’e-2 microwave radiometer data. Planet. Space Sci. 122, 101–109 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Feng, J. & Siegler, M. A. Reconciling the infrared and microwave observations of the lunar south pole: a study on subsurface temperature and regolith density. J. Geophys. Res. Planets 126, e2020JE006623 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ulaby, F. T., Moore, R. K. & Fung, A. K. Microwave Remote Sensing: Active and Passive. Volume 2—Radar Remote Sensing and Surface Scattering and Emission Theory (Artech House, 1982).

  • Ulaby, F. T., Moore, R. K. & Fung, A. K. Microwave Remote Sensing: Active and Passive. Volume 3—From Theory to Applications (Artech House, 1986).

  • Carrier, W. D. III, Olhoeft, G. R. & Mendell, W. Physical Properties of the Lunar Surface: Lunar Sourcebook 475–594 (Cambridge Univ. Press, 1991).

  • Wang, Z. et al. Calibration and brightness temperature algorithm of CE-1 Lunar Microwave Sounder (CELMS). Sci. China Earth Sci. 53, 1392–1406 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hayne, P. O. et al. Global regolith thermophysical properties of the Moon from the Diviner Lunar Radiometer Experiment. J. Geophys. Res. Planets 122, 2371–2400 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Paige, D. A. et al. Thermal stability of volatiles in the north polar region of Mercury. Science 339, 300–303 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Paige, D. A. et al. Diviner lunar radiometer observations of cold traps in the Moon’s south polar region. Science 330, 479–482 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegler, M., Paige, D., Williams, J. P. & Bills, B. Evolution of lunar polar ice stability. Icarus 255, 78–87 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Siegler, M. A. et al. Lunar true polar wander inferred from polar hydrogen. Nature 531, 480–484 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, D. L. & De Pater, I. Microwave imaging of Mercury’s thermal emission at wavelengths from 0.3 to 20.5 cm. Icarus 110, 2–32 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Whipple, F. L. The theory of micro-meteorites: Part I. In an isothermal atmosphere. Proc. Natl Acad. Sci. USA 36, 687–695 (1950).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasavada, A. R. et al. Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. J. Geophys. Res. Planets 117, E00H18 (2012).

  • Gudmundsson, A. Magma-chamber geometry, fluid transport, local stresses and rock behaviour during collapse caldera formation. Dev. Volcanol. 10, 313–349 (2008).

    Article 

    Google Scholar
     

  • Geyer, A., Folch, A. & Martí, J. Relationship between caldera collapse and magma chamber withdrawal: an experimental approach. J. Volcanol. Geotherm. Res. 157, 375–386 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shirley, K. A., Zanetti, M., Jolliff, B. L., van der Bogert, C. H. & Hiesinger, H. Crater size–frequency distribution measurements at the Compton–Belkovich Volcanic Complex. Icarus 273, 214–223 (2016).

  • Besserer, J. et al. GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys. Res. Lett. 41, 5771–5777 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Cho, W. J., Kwon, S. & Choi, J. W. The thermal conductivity for granite with various water contents. Eng. Geol. 107, 167–171 (2009).

    Article 

    Google Scholar
     

  • Wieczorek, M. A. & Phillips, R. J. Potential anomalies on a sphere: applications to the thickness of the lunar crust. J. Geophys. Res. 103, 1715–1724 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Kiefer, W. S. et al. The bulk density of the small lunar volcanos Gruithuisen Delta and Hansteen Alpha: implications for volcano composition and petrogenesis. In Proc. Lunar and Planetary Science Conference Vol. 47, 1722 (Lunar and Planetary Institute, 2016).

  • Jansen, J. C. et al. The subsurface structure of the Compton–Belkovich thorium anomaly as revealed by GRAIL. In Proc. Lunar and Planetary Science Conference 1832, 2185 (Lunar and Planetary Institute, 2015).

  • Blakely, R. J. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51, 1494–1498 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Source link