May 5, 2024
Reply to: Multivariate BWAS can be replicable with moderate sample sizes – Nature

Reply to: Multivariate BWAS can be replicable with moderate sample sizes – Nature

  • Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schönbrodt, F. D. & Perugini, M. At what sample size do correlations stabilize? J. Res. Pers. 47, 609–612 (2013).

  • Button, K. S. et al. Confidence and precision increase with high statistical power. Nat. Rev. Neurosci. 14, 585–586 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varoquaux, G. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage 180, 68–77 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Traut, N. et al. Insights from an autism imaging biomarker challenge: promises and threats to biomarker discovery. Neuroimage 255, 119171 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spisak, T., Bingel, U. & Wager, T. D. Multivariate BWAS can be replicable with moderate sample sizes. Nature https://doi.org/10.1038/s41586-023-05745-x (2023).

  • Schulz, M.-A., Bzdok, D., Haufe, S., Haynes, J.-D. & Ritter, K. Performance reserves in brain-imaging-based phenotype prediction. Preprint at https://doi.org/10.1101/2022.02.23.481601 (2022).

  • Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry 77, 534–540 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poldrack, R. A. The costs of reproducibility. Neuron 101, 11–14 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proc. IJCAI 95 (ed. Mellish, C. S.) 1137–1143 (Morgan Kaufman, 1995).

  • Scheinost, D. et al. Ten simple rules for predictive modeling of individual differences in neuroimaging. Neuroimage 193, 35–45 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sui, J., Jiang, R., Bustillo, J. & Calhoun, V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol. Psychiatry 88, 818–828 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ioannidis, J. P. A. Why most discovered true associations are inflated. Epidemiology 19, 640–648 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Pulini, A. A., Kerr, W. T., Loo, S. K. & Lenartowicz, A. Classification accuracy of neuroimaging biomarkers in attention-deficit/hyperactivity disorder: effects of sample size and circular analysis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 108–120 (2019).

    PubMed 

    Google Scholar
     

  • Funder, D. C. & Ozer, D. J. Evaluating effect size in psychological research: sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2, 156–168 (2019).

  • Meyer, G. J. et al. Psychological testing and psychological assessment: a review of evidence and issues. Am. Psychol. 56, 128–165 (2001).

  • He, T. et al. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. Neuroimage 206, 116276 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Leptak, C. et al. What evidence do we need for biomarker qualification? Sci. Transl. Med. 9, eaal4599 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 33, 61–83 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Bailey, Z. D. et al. Structural racism and health inequities in the USA: evidence and interventions. Lancet 389, 1453–1463 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gratton, C., Nelson, S. M. & Gordon, E. M. Brain-behavior correlations: two paths toward reliability. Neuron 110, 1446–1449 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levey, D. F et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nature 24, 954–963 (2021).

  • Muggleton, N. et al. The association between gambling and financial, social and health outcomes in big financial data. Nat. Hum. Behav. 5, 319–326 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link