May 7, 2024

Ridgecrest aftershocks at Coso suppressed by thermal destressing

  • 1.

    Zang, A. et al. Analysis of induced seismicity in geothermal reservoirs – an overview. Geothermics 52, 6–21 (2014).


    Google Scholar
     

  • 2.

    Kim, K.-H. et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science 360, 1007–1009 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Ross, Z. E. et al. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science 366, 346–351 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Hardebeck, J. L. A stress-similarity triggering model for aftershocks of the Mw 6.4 and 7.1 Ridgecrest earthquakes. Bull. Seismol. Soc. Am. 110, 1716–1727 (2020).


    Google Scholar
     

  • 5.

    Chen, K. et al. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nat. Commun. 11, 22 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Hill, D. P. et al. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science 260, 1617–1623 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Grigoli, F. et al. The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science 360, 1003–1006 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Deichmann, N. & Giardini, D. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol. Res. Lett. 80, 784–798 (2009).


    Google Scholar
     

  • 9.

    Hauksson, E. & Unruh, J. Regional tectonics of the Coso geothermal area along the intracontinental plate boundary in central eastern California: three-dimensional Vp and Vp/Vs models, spatial-temporal seismicity patterns, and seismogenic deformation. J. Geophys. Res. Solid Earth 112, B06309 (2007).

    ADS 

    Google Scholar
     

  • 10.

    Hauksson, E., Yang, W. & Shearer, P. M. Waveform relocated earthquake catalog for Southern California (1981 to June 2011). Bull. Seismol. Soc. Am. 102, 2239–2244 (2012).


    Google Scholar
     

  • 11.

    Kaven, J. O. Seismicity rate change at the Coso geothermal field following the July 2019 Ridgecrest earthquakes. Bull. Seismol. Soc. Am. 110, 1728–1735 (2020).


    Google Scholar
     

  • 12.

    Blake, K. et al. Updated shallow temperature survey and resource evolution for the Coso geothermal field. In Proc. World Geotherm. Congr. (2020).

  • 13.

    Bertani, R. World geothermal power generation in the period 2001–2005. Geothermics 34, 651–690 (2005).


    Google Scholar
     

  • 14.

    Fialko, Y. & Simons, M. Deformation and seismicity in the Coso geothermal area, Inyo County, California: observations and modeling using satellite radar interferometry. J. Geophys. Res. Solid Earth 105, 21781–21793 (2000).


    Google Scholar
     

  • 15.

    Reinisch, E. C., Cardiff, M., Kreemer, C., Akerley, J. & Feigl, K. L. Time-series analysis of volume change at Brady Hot Springs, Nevada, USA, using geodetic data from 2003–2018. J. Geophys. Res. Solid Earth 125, B017816 (2020).


    Google Scholar
     

  • 16.

    Wicks, C. W., Thatcher, W., Monastero, F. C. & Hasting, M. A. Steady state deformation of the Coso Range, east central California, inferred from satellite radar interferometry. J. Geophys. Res. Solid Earth 106, 13769–13780 (2001).


    Google Scholar
     

  • 17.

    Blankenship, D. A. et al. Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report West Flank of Coso, CA. Report No. 1455367, https://doi.org/10.2172/1455367 (US Department of Energy, 2016).

  • 18.

    Goebel, T. H. W. & Brodsky, E. E. The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science 361, 899–904 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 19.

    Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J. & Brodsky, E. E. The 2016 Mw 5.1 Fairview, Oklahoma earthquakes: evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth Planet. Sci. Lett. 472, 50–61 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Sanyal, S., Menzies, A., Granados, E., Sugine, S. & Gentner, R. Long term testing of geothermal wells in the Coso hot springs KGRA. In Proc. 12th Work. Geotherm. Reserv. Eng. 37–44 (1987).

  • 21.

    Im, K., Elsworth, D., Guglielmi, Y. & Mattioli, G. S. Geodetic imaging of thermal deformation in geothermal reservoirs – production, depletion and fault reactivation. J. Volcanol. Geotherm. Res. 338, 79–91 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Rutqvist, J., Wu, Y.-S., Tsang, C.-F. & Bodvarsson, G. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 39, 429–442 (2002).


    Google Scholar
     

  • 23.

    Segall, P. & Fitzgerald, S. D. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289, 117–128 (1998).

    ADS 

    Google Scholar
     

  • 24.

    Yang, W., Hauksson, E. & Shearer, P. M. Computing a large refined catalog of focal mechanisms for southern California (1981–2010): temporal stability of the style of faulting. Bull. Seismol. Soc. Am. 102, 1179–1194 (2012).


    Google Scholar
     

  • 25.

    Taron, J., Elsworth, D. & Min, K.-B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int. J. Rock Mech. Min. Sci. 46, 842–854 (2009).


    Google Scholar
     

  • 26.

    Feng, Q. & Lees, J. M. Microseismicity, stress, and fracture in the Coso geothermal field, California. Tectonophysics 289, 221–238 (1998).

    ADS 

    Google Scholar
     

  • 27.

    Davatzes, N. C. & Hickman, S. H. Stress and Faulting in the Coso Geothermal Field: Update and Recent Results from the East Flank and Coso Wash. In Proc. 31st Work. Geotherm. Reserv. Eng. (2006).

  • 28.

    Rose, P. et al. An enhanced geothermal system at Coso, California — recent accomplishments. In Proc. World Geotherm. Congr. (2005).

  • 29.

    Cooper, H. W. & Simmons, G. The effect of cracks on the thermal expansion of rocks. Earth Planet. Sci. Lett. 36, 404–412 (1977).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Spane, F. Jr. Hydrogeologic Investigation of Coso Hot Springs, Inyo County, California. Report No. 6025, https://www.ekcrcd.org/files/bcdf564af/Hydrogeologic+Investigation+of+Coso+Hot+Springs.pdf (Naval Weapons Center, 1978).

  • 31.

    MHA Environmental Consulting. Coso Operating Company Hay Ranch Water Extraction and Delivery System. Conditional Use Permit (CUP 2007-003) Application. Report No. SCH 2007101002, https://www.inyowater.org/wp-content/uploads/legacy/INDEX_DOCS/Coso%20Hay%20Ranch_FEIR_Dec_30_08.pdf (2008).

  • 32.

    Zarrouk, S. J. & Moon, H. Efficiency of geothermal power plants: a worldwide review. Geothermics 51, 142–153 (2014).


    Google Scholar
     

  • 33.

    Ali, S. T. et al. Geodetic measurements and numerical models of deformation: examples from geothermal fields in the western United States. In Proc. 41st Work. Geotherm. Reserv. Eng. (2016).

  • 34.

    Wang, K. & Bürgmann, R. Co‐ and early postseismic deformation due to the 2019 Ridgecrest earthquake sequence constrained by Sentinel‐1 and COSMO‐SkyMed SAR data. Seismol. Res. Lett. 91, 1998–2009 (2020).


    Google Scholar
     

  • 35.

    Reinisch, E. C., Ali, S. T., Cardiff, M., Kaven, J. O. & Feigl, K. L. Geodetic measurements and numerical models of deformation at Coso geothermal field, California, 2004–2016. Remote Sens. 12, 225 (2020).

    ADS 

    Google Scholar
     

  • 36.

    Ader, T. J., Lapusta, N., Avouac, J.-P. & Ampuero, J.-P. Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations. Geophys. J. Int. 198, 385–413 (2014).

    ADS 

    Google Scholar
     

  • 37.

    Dieterich, J. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. Solid Earth 99, 2601–2618 (1994).


    Google Scholar
     

  • 38.

    Zhang, Q. et al. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields. Geophys. Res. Lett. 44, 726–733 (2017).

    ADS 

    Google Scholar
     

  • 39.

    Alfaro-Diaz, R., Velasco, A. A., Pankow, K. L. & Kilb, D. Optimally oriented remote triggering in the Coso geothermal region. J. Geophys. Res. Solid Earth 125, B019131 (2020).


    Google Scholar
     

  • 40.

    Hauksson, E. & Jones, L. M. Seismicity, stress state, and style of faulting of the Ridgecrest‐Coso region from the 1930s to 2019: seismotectonics of an evolving plate boundary segment. Bull. Seismol. Soc. Am. 110, 1457–1473 (2020).


    Google Scholar
     

  • 41.

    Kostrov, V. Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Acad. Sci. USSR Phys. Solid Earth 1, 23–44 (1974).

    MathSciNet 

    Google Scholar
     

  • 42.

    Cornet, F. H., Helm, J., Poitrenaud, H. & Etchecopar, A. Seismic and aseismic slips induced by large-scale fluid injections. Pure Appl. Geophys. 150, 563–583 (1997).

    ADS 

    Google Scholar
     

  • 43.

    Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P. & Elsworth, D. Seismicity triggered by fluid injection-induced aseismic slip. Science 348, 1224–1226 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Wei, S. et al. The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth Planet. Sci. Lett. 422, 115–125 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Cappa, F., Scuderi, M. M., Collettini, C., Guglielmi, Y. & Avouac, J.-P. Stabilization of fault slip by fluid injection in the laboratory and in situ. Sci. Adv. 5, eaau4065 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kwiatek, G. et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci. Adv. 5, eaav7224 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Hillers, G. et al. Noise-based monitoring and imaging of aseismic transient deformation induced by the 2006 Basel reservoir stimulation. Geophysics 80, KS51–KS68 (2015).

    ADS 

    Google Scholar
     

  • 48.

    Häring, M. O., Schanz, U., Ladner, F. & Dyer, B. C. Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37, 469–495 (2008).


    Google Scholar
     

  • 49.

    Gan, Q. & Elsworth, D. Thermal drawdown and late-stage seismic-slip fault reactivation in enhanced geothermal reservoirs. J. Geophys. Res. Solid Earth 119, 8936–8949 (2014).

    ADS 

    Google Scholar
     

  • 50.

    Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A. 241, 376–396 (1957)

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 51.

    Peaceman, D. W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. Soc. Pet. Eng. J. 23, 531–543 (1983).


    Google Scholar
     

  • 52.

    Cappa, F. & Rutqvist, J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int. J. Greenh. Gas Control 5, 336–346 (2011).


    Google Scholar
     

  • 53.

    Frohlich, C. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 75, 193–198 (1992).

    ADS 

    Google Scholar
     

  • Source link