May 4, 2024
River ecosystem metabolism and carbon biogeochemistry in a changing world – Nature

River ecosystem metabolism and carbon biogeochemistry in a changing world – Nature

  • Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015). Important study conceptualizing (on the basis of a data synthesis) how the sources and magnitude of CO2 evasion flux change along a stream–river continuum.

  • Ciais, P. et al. in Climate Change 2013 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 6 (Cambridge Univ. Press, 2013).

  • Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article 

    Google Scholar
     

  • Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007). A pioneering study showing the role of inland waters for large-scale carbon fluxes and highlighting them as ‘reactors’ rather than ‘passive pipes’.

    Article 

    Google Scholar
     

  • Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).

    Article 

    Google Scholar
     

  • Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, 99–118 (2018). A synthesis of the predominant drivers and constraints on metabolic regimes of stream and river ecosystems.

    Article 

    Google Scholar
     

  • Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

    Article 

    Google Scholar
     

  • Costanza, R. & Mageau, M. What is a healthy ecosystem? Aquat. Ecol. 33, 105–115 (1999).

    Article 

    Google Scholar
     

  • Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article 

    Google Scholar
     

  • Gudmundsson, L. et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371, 1159–1162 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of global surface water storage variability. Nature 591, 78–81 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jaramillo, F. & Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350, 1248–1251 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Quinton, J. N., Govers, G., Oost, K. V. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high‐resolution global study. Water Resour. Res. 54, 345–358 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013). The first study showing the extent to which human activities have altered the magnitude of contemporary lateral carbon fluxes from land to ocean.

    Article 
    CAS 

    Google Scholar
     

  • Rüegg, J. et al. Thinking like a consumer: linking aquatic basal metabolism and consumer dynamics. Limnol. Oceanogr. Lett. 6, 1–17 (2021).

    Article 

    Google Scholar
     

  • Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article 

    Google Scholar
     

  • Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Phillips, J. S. Time‐varying responses of lake metabolism to light and temperature. Limnol. Oceanogr. 65, 652–666 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Uehlinger, U. Annual cycle and inter‐annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15‐year period. Freshw. Biol. 51, 938–950 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Uehlinger, U. & Naegeli, M. W. Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. J. North Am. Benthol. Soc. 17, 165–178 (1998).

    Article 

    Google Scholar
     

  • Mulholland, P. J. et al. Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, B. J., Mulholland, P. J. & Hill, W. R. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Appling, A. P., Hall, R. O., Yackulic, C. B. & Arroita, M. Overcoming equifinality: leveraging long time series for stream metabolism estimation. J. Geophys. Res. Biogeosci. 123, 624–645 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Appling, A. P. et al. The metabolic regimes of 356 rivers in the United States. Sci. Data 5, 180292 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Canadell, M. B. et al. Regimes of primary production and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).

    Article 

    Google Scholar
     

  • Myrstener, M., Gómez‐Gener, L., Rocher‐Ros, G., Giesler, R. & Sponseller, R. A. Nutrients influence seasonal metabolic patterns and total productivity of Arctic streams. Limnol. Oceanogr. 66, S182–S196 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Savoy, P. et al. Metabolic rhythms in flowing waters: an approach for classifying river productivity regimes. Limnol. Oceanogr. 64, 1835–1851 (2019).

    Article 

    Google Scholar
     

  • Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic light regimes improves predictions of primary production and constrains light-use efficiency in streams and rivers. Ecosystems 24, 825–839 (2021).

    Article 

    Google Scholar
     

  • Bernhardt, E. S. et al. Light and flow regimes regulate the metabolism of rivers. Proc. Natl Acad. Sci. USA 119, e2121976119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Savoy, P. & Harvey, J. W. Predicting light regime controls on primary productivity across CONUS river networks. Geophys. Res. Lett. 48, e2020GL092149 (2021).

    Article 

    Google Scholar
     

  • Julian, J. P., Stanley, E. H. & Doyle, M. W. Basin-scale consequences of agricultural land use on benthic light availability and primary production along a sixth-order temperate river. Ecosystems 11, 1091–1105 (2008).

    Article 

    Google Scholar
     

  • Hall, R. O. et al. Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnol. Oceanogr. 60, 512–526 (2015).

    Article 

    Google Scholar
     

  • Hosen, J. D. et al. Enhancement of primary production during drought in a temperate watershed is greater in larger rivers than headwater streams. Limnol. Oceanogr. 64, 1458–1472 (2019).

    Article 

    Google Scholar
     

  • Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article 

    Google Scholar
     

  • Demars, B. O. L. et al. Temperature and the metabolic balance of streams. Freshw. Biol. 56, 1106–1121 (2011).

    Article 

    Google Scholar
     

  • Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hood, J. M. et al. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Glob. Change Biol. 24, 1069–1084 (2018).

    Article 

    Google Scholar
     

  • Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Pace, M. L. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277, 248–251 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Iannucci, F. M., Beneš, J., Medvedeff, A. & Bowden, W. B. Biogeochemical responses over 37 years to manipulation of phosphorus concentrations in an Arctic river: The Upper Kuparuk River Experiment. Hydrol. Process. 35, e14075 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rosemond, A. D. et al. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347, 1142–1145 (2015). A key study explaining how nutrient excess can accelerate terrestrial carbon loss from stream ecosystems.

    Article 
    CAS 

    Google Scholar
     

  • Arroita, M., Elosegi, A. & Hall, R. O. Jr Twenty years of daily metabolism show riverine recovery following sewage abatement. Limnol. Oceanogr. 64, 77–92 (2019).

    Article 

    Google Scholar
     

  • Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008). An important article conceptualizing how physical and biological processes combine to shape metabolic dynamics and carbon fluxes in fluvial networks.

    Article 
    CAS 

    Google Scholar
     

  • Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Marzolf, N. S. & Ardón, M. Ecosystem metabolism in tropical streams and rivers: a review and synthesis. Limnol. Oceanogr. 66, 1627–1638 (2021).

    Article 

    Google Scholar
     

  • Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat. Commun. 9, 4825 (2018).

    Article 

    Google Scholar
     

  • Ciais, P. et al. Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2020).

    Article 

    Google Scholar
     

  • Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013). Important review on the sources, exchange and fates of carbon in the coastal ocean and how human activities have altered the coastal carbon cycle.

    Article 
    CAS 

    Google Scholar
     

  • Reichert, P., Uehlinger, U. & Acuña, V. Estimating stream metabolism from oxygen concentrations: effect of spatial heterogeneity. J. Geophys. Res. Biogeosci. 114, G03016 (2009).

    Article 

    Google Scholar
     

  • Koenig, L. E. et al. Emergent productivity regimes of river networks. Limnol. Oceanogr. Lett. 4, 173–181 (2019).

    Article 

    Google Scholar
     

  • Rodríguez-Castillo, T., Estévez, E., González-Ferreras, A. M. & Barquín, J. Estimating ecosystem metabolism to entire river networks. Ecosystems 22, 892–911 (2019).

    Article 

    Google Scholar
     

  • Segatto, P. L., Battin, T. J. & Bertuzzo, E. The metabolic regimes at the scale of an entire stream network unveiled through sensor data and machine learning. Ecosystems 24, 1792–1809 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Loreau, M., Mouquet, N. & Holt, R. D. Meta‐ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 6, 673–679 (2003).

    Article 

    Google Scholar
     

  • Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (Intergovernmental Panel on Climate Change (IPCC), 2010).

  • Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Beyond respiration: controls on lateral carbon fluxes across the terrestrial‐aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88 (2018). Important synthesis on the mechanisms and controls of organic and inorganic carbon flows across terrestrial–aquatic interfaces.

    Article 

    Google Scholar
     

  • Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem. Cycles 14, 127–138 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 603, 401–410 (2022).

    Article 
    CAS 

    Google Scholar
     

  • van Hoek, W. J. et al. Exploring spatially explicit changes in carbon budgets of global river basins during the 20th century. Environ. Sci. Technol. 55, 16757–16769 (2021). A global quantitative assessment of river carbon fluxes in the twentieth century, highlighting the combined influence of environmental and anthropogenic controls on the long-term patterns of global carbon export.

    Article 

    Google Scholar
     

  • Abril, G. & Borges, A. V. Ideas and perspectives: carbon leaks from flooded land: do we need to replumb the inland water active pipe? Biogeosciences 16, 769–784 (2019). Important review emphasizing the role of flooding for inland water carbon cycling at the global scale.

    Article 
    CAS 

    Google Scholar
     

  • Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P. & Ciais, P. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the Amazon Basin. One Earth 3, 226–236 (2020).

    Article 

    Google Scholar
     

  • Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse‐shunt concept. Ecology 97, 5–16 (2016).

    Article 

    Google Scholar
     

  • Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat. Geosci. 9, 501–504 (2016).

    Article 

    Google Scholar
     

  • Maavara, T., Lauerwald, R., Regnier, P. & Cappellen, P. V. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 8, 15347 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694–1697 (2017).

    Article 

    Google Scholar
     

  • Downing, J. A. et al. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem. Cycles 22, GB1018 (2008).

    Article 

    Google Scholar
     

  • Deemer, B. R. et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66, 949–964 (2016).

    Article 

    Google Scholar
     

  • Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dodds, W. K. et al. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshw. Sci. 32, 1073–1087 (2013).

    Article 

    Google Scholar
     

  • Ros, G. R., Sponseller, R. A., Bergström, A. K., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. 26, 1400–1413 (2020).

    Article 

    Google Scholar
     

  • Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & Del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams. Sci. Total Environ. 579, 902–912 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Aho, K. S., Hosen, J. D., Logozzo, L. A., McGillis, W. R. & Raymond, P. A. Highest rates of gross primary productivity maintained despite CO2 depletion in a temperate river network. Limnol. Oceanogr. Lett. 6, 200–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wehrli, B. Conduits of the carbon cycle. Nature 503, 346–347 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sarmiento, J. L. & Sundquist, E. T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Lacroix, F., Ilyina, T., Laruelle, G. G. & Regnier, P. Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: was the global continental shelf already both autotrophic and a CO2 sink? Glob. Biogeochem. Cycles 35, e2020GB006603 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes. Global Biogeochem. Cycles 21, GB1019 (2007).


    Google Scholar
     

  • Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, L.-C. et al. Unusual roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Sci. Rep. 9, 1574 (2019).

    Article 

    Google Scholar
     

  • Reddy, S. K. K. et al. Export of particulate organic carbon by the mountainous tropical rivers of Western Ghats, India: variations and controls. Sci. Total Environ. 751, 142115 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 34, L19405 (2007).

    Article 

    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guillemette, F., Berggren, M., Giorgio, P. Adel. & Lapierre, J.-F. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).

    Article 

    Google Scholar
     

  • Hastie, A., Lauerwald, R., Ciais, P., Papa, F. & Regnier, P. Historical and future contributions of inland waters to the Congo Basin carbon balance. Earth Syst. Dyn. 12, 37–62 (2020).

    Article 

    Google Scholar
     

  • Nakhavali, M. et al. Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Glob. Change Biol. 27, 1083–1096 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tian, H. et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Global Biogeochem. Cycles 29, 775–792 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Öquist, M. G. et al. The full annual carbon balance of boreal forests is highly sensitive to precipitation. Environ. Sci. Technol. Lett. 1, 315–319 (2014).

    Article 

    Google Scholar
     

  • Jones, J. B.Jr, Stanley, E. H. & Mulholland, P. J. Long‐term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).

    Article 

    Google Scholar
     

  • Raymond, P. A. & Oh, N.-H. Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth Planet. Sci. Lett. 284, 50–56 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ran, L. et al. Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nat. Commun. 12, 1730 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zarnetske, J. P., Bouda, M., Geophysical, B. A., Saiers, J. & Raymond, P. Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States. Geophys. Res. Lett. 45, 11,702–11,711 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nydahl, A. C., Wallin, M. B. & Weyhenmeyer, G. A. No long‐term trends in pCO2 despite increasing organic carbon concentrations in boreal lakes, streams, and rivers. Global Biogeochem. Cycles 31, 985–995 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Raymond, P. A. & Hamilton, S. K. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 3, 143–155 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ulseth, A. J., Bertuzzo, E., Singer, G. A., Schelker, J. & Battin, T. J. Climate-induced changes in spring snowmelt impact ecosystem metabolism and carbon fluxes in an Alpine stream network. Ecosystems 21, 373–390 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article 

    Google Scholar
     

  • Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wit, F. et al. The impact of disturbed peatlands on river outgassing in Southeast Asia. Nat. Commun. 6, 10155 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Moore, S., Gauci, V., Evans, C. D. & Page, S. E. Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences 8, 901–909 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Masese, F. O., Salcedo-Borda, J. S., Gettel, G. M., Irvine, K. & McClain, M. E. Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132, 1–22 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bernot, M. J. et al. Inter‐regional comparison of land‐use effects on stream metabolism. Freshw. Biol. 55, 1874–1890 (2010). Among the first studies showing how land use alters ecosystem metabolism across geographic regions.

    Article 

    Google Scholar
     

  • Griffiths, N. A. et al. Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol. Oceanogr. 58, 1513–1529 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sweeney, B. W. et al. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl Acad. Sci. 101, 14132–14137 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Roley, S. S., Tank, J. L., Griffiths, N. A., Hall, R. O. Jr & Davis, R. T. The influence of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year continuous data set. Freshw. Sci. 33, 1043–1059 (2014).

    Article 

    Google Scholar
     

  • Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time series patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2016).

    Article 

    Google Scholar
     

  • Blackburn, S. R. & Stanley, E. H. Floods increase carbon dioxide and methane fluxes in agricultural streams. Freshw. Biol. 66, 62–77 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289, 1922–1925 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yin, J. et al. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 9, 4389 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Myhre, G. et al. Sensible heat has significantly affected the global hydrological cycle over the historical period. Nat. Commun. 9, 1922 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Climate change causes river network contraction and disconnection in the H.J. Andrews Experimental Forest, Oregon, USA. Front. Water 2, 7 (2020).

    Article 

    Google Scholar
     

  • Sabater, S., Timoner, X., Borrego, C. & Acuña, V. Stream biofilm responses to flow intermittency: from cells to ecosystems. Front. Environ. Sci. 4, 14 (2016).

    Article 

    Google Scholar
     

  • Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).

    Article 

    Google Scholar
     

  • Marcé, R. et al. Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth Sci. Rev. 188, 240–248 (2019).

    Article 

    Google Scholar
     

  • Blaszczak, J. R., Delesantro, J. M., Urban, D. L., Doyle, M. W. & Bernhardt, E. S. Scoured or suffocated: urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Oceanogr. 64, 877–894 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reisinger, A. J. et al. Recovery and resilience of urban stream metabolism following Superstorm Sandy and other floods. Ecosphere 8, e01776 (2017).

    Article 

    Google Scholar
     

  • O’Donnell, B. & Hotchkiss, E. R. Coupling concentration‐ and process‐discharge relationships integrates water chemistry and metabolism in streams. Water Resour. Res. 55, 10179–10190 (2019).

    Article 

    Google Scholar
     

  • Thellman, A. et al. The ecology of river ice. J. Geophys. Res. Biogeosci. 126, e2021JG006275 (2021).

    Article 

    Google Scholar
     

  • Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Article 

    Google Scholar
     

  • Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Keller, P. S., Marcé, R., Obrador, B. & Koschorreck, M. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 14, 402–408 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Calamita, E. et al. Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, J.-H. et al. Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges. Biogeosciences 15, 3049–3069 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rosamond, M. S., Thuss, S. J. & Schiff, S. L. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. Nat. Geosci. 5, 715–718 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol. Monogr. 86, 146–171 (2016). Key paper highlighting the role of streams and rivers for methane production and emissions and developing a conceptual framework on the environmental drivers of methane dynamics in fluvial ecosystems.

    Article 

    Google Scholar
     

  • Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article 

    Google Scholar
     

  • Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W. & Bencala, K. E. Retention and transport of nutrients in a third‐order stream in northwestern California: hyporheic processes. Ecology 70, 1893–1905 (1989).

    Article 

    Google Scholar
     

  • Carter, A. M., Blaszczak, J. R., Heffernan, J. B. & Bernhardt, E. S. Hypoxia dynamics and spatial distribution in a low gradient river. Limnol. Oceanogr. 66, 2251–2265 (2021).

    Article 

    Google Scholar
     

  • Kadygrov, N. et al. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe. Atmos. Chem. Phys. 15, 12765–12787 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hanson, P. C., Weathers, K. C. & Kratz, T. K. Networked lake science: how the Global Lake Ecological Observatory Network (GLEON) works to understand, predict, and communicate lake ecosystem response to global change. Inland Waters 6, 543–554 (2018).

    Article 

    Google Scholar
     

  • Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with biogeochemical-Argo. Annu. Rev. Mar. Sci. 12, 23–48 (2019).

    Article 

    Google Scholar
     

  • Jankowski, K. J., Mejia, F. H., Blaszczak, J. R. & Holtgrieve, G. W. Aquatic ecosystem metabolism as a tool in environmental management. Wiley Interdiscip. Rev. Water 8, e1521 (2021).

    Article 

    Google Scholar
     

  • Mao, F. et al. Moving beyond the technology: a socio-technical roadmap for low-cost water sensor network applications. Environ. Sci. Technol. 54, 9145–9158 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, J., Kim, K. T. & Lee, W. H. Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water 12, 510 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yamazaki, D. et al. MERIT Hydro: a high‐resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).

    Article 

    Google Scholar
     

  • Lin, P., Pan, M., Wood, E. F., Yamazaki, D. & Allen, G. H. A new vector-based global river network dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).

    Article 

    Google Scholar
     

  • Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–587 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Durand, M. et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 52, 4527–4549 (2016).

    Article 

    Google Scholar
     

  • Frasson, R. P. M. et al. Exploring the factors controlling the error characteristics of the surface water and ocean topography mission discharge estimates. Water Resour. Res. 57, e2020WR028519 (2021).

    Article 

    Google Scholar
     

  • Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Campbell, A. D. et al. A review of carbon monitoring in wet carbon systems using remote sensing. Environ. Res. Lett. 17, 025009 (2022).

    Article 

    Google Scholar
     

  • Allen, G. H. et al. Similarity of stream width distributions across headwater systems. Nat. Commun. 9, 610 (2018).

    Article 

    Google Scholar
     

  • Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-organization (Cambridge Univ. Press, 2001). Game-changing oeuvre formalizing the structure and function of river networks.

  • Bertuzzo, E., Helton, A. M., Hall, Robert, O. & Battin, T. J. Scaling of dissolved organic carbon removal in river networks. Adv. Water Resour. 110, 136–146 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Role of surface and subsurface processes in scaling N2O emissions along riverine networks. Proc. Natl Acad. Sci. USA 114, 4330–4335 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Marzadri, A. et al. Global riverine nitrous oxide emissions: the role of small streams and large rivers. Sci. Total Environ. 776, 145148 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Botter, G. & Durighetto, N. The stream length duration curve: a tool for characterizing the time variability of the flowing stream length. Water Resour. Res. 56, e2020WR027282 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wollheim, W. M. et al. River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks. Biogeochemistry 141, 503–521 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M. & Botter, G. Intraseasonal drainage network dynamics in a headwater catchment of the Italian Alps. Water Resour. Res. 56, e2019WR02556 (2020).

    Article 

    Google Scholar
     

  • Montgomery, D. R. & Dietrich, W. E. Source areas, drainage density, and channel initiation. Water Resour. Res. 25, 1907–1918 (1989).

    Article 

    Google Scholar
     

  • Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 1. Theoretical framework and plot‐scale analysis. J. Adv. Model. Earth. Syst. 4, M05002 (2012).


    Google Scholar
     

  • Ulseth, A. J. et al. Distinct air–water gas exchange regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hall, R. O. in Streams and Ecosystems in a Changing Environment (eds. Jones, J. J. & Stanley, E. H.) 151–180 (Academic, 2016).

  • Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 4, 839–842 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).

    Article 

    Google Scholar
     

  • Source link