May 6, 2024

Scalable production of high-performing woven lithium-ion fibre batteries – Nature

  • 1.

    Mackanic, D. G., Kao, M. & Bao, Z. Enabling deformable and stretchable batteries. Adv. Energy Mater. 10, 2001424 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Lee, J. et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications. Adv. Mater. 32, 1902532 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Mo, F. et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 32, 1902151 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Sun, H. et al. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Cheng, X. et al. Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics. J. Mater. Chem. A 3, 19304–19309 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Chen, Y., Chang, K., Hu, C. & Cheng, T. Performance comparisons and resistance modeling for multi-segment electrode designs of power-oriented lithium-ion batteries. Electrochim. Acta 55, 6433–6439 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Ren, J. et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25, 1155–1159 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Aubin, C. A. et al. Electrolytic vascular systems for energy-dense robots. Nature 571, 51–57 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Han, C. G. et al. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Kwon, Y. H. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24, 5192–5197 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Wang, Y. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 27, 1703140 (2017).

    Article 

    Google Scholar
     

  • 15.

    Ren, J. et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 53, 7864–7869 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Wu, Z. et al. Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small 14, 1800414 (2018).

    Article 

    Google Scholar
     

  • 17.

    Wang, L. et al. A Li-air battery with ultralong cycle life in ambient air. Adv. Mater. 30, 1704378 (2018).

    Article 

    Google Scholar
     

  • 18.

    Wang, K. et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 10, 24573–24582 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Zhang, Y. et al. An ultraflexible silicon-oxygen battery fiber with high energy density. Angew. Chem. Int. Ed. 56, 13741–13746 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Zhang, Y. et al. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A Mater. Energy Sustain. 4, 9002–9008 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Khan, Z. et al. Steady flow and heat transfer analysis of Phan–Thein–Tanner fluid in double-layer optical fiber coating analysis with slip conditions. Sci. Rep. 6, 34593 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Mirri, F. et al. Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating. ACS Appl. Mater. Interfaces 8, 4903–4910 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Fan, H. et al. Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl. Mater. Interfaces 12, 28451–28460 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Quéré, D. Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347–384 (1999).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    de Ryck, A. & Quéré, D. Fluid coating from a polymer solution. Langmuir 14, 1911–1914 (1998).

    Article 

    Google Scholar
     

  • 27.

    Li, G. X. et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Niu, C. J. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Wang, L. et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 28, 1804456 (2018).

    Article 

    Google Scholar
     

  • 30.

    LeGrys, V. A. Sweat testing for the diagnosis of cystic fibrosis: practical considerations. J. Pediatr. 129, 892–897 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Nyein, H. Y. et al. A Wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Source link