May 23, 2024

Search for magnetic monopoles produced via the Schwinger mechanism – Nature

  • 1.

    Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 2.

    Affleck, I. K. & Manton, N. S. Monopole pair production in a magnetic field. Nucl. Phys. B 194, 38–64 (1982).

    ADS 

    Google Scholar
     

  • 3.

    Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. London A 133, 60–72 (1931).

    ADS 
    MATH 

    Google Scholar
     

  • 4.

    ’t Hooft, G. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276–284 (1974).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 5.

    Polyakov, A. M. Particle spectrum in quantum field theory. JETP Lett. 20, 194–195 (1974).

    ADS 

    Google Scholar
     

  • 6.

    Wen, X.-G. & Witten, E. Electric and magnetic charges in superstring models. Nucl. Phys. B 261, 651–677 (1985).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 7.

    Mavromatos, N. E. & Mitsou, V. A. Magnetic monopoles revisited: models and searches at colliders and in the cosmos. Int. J. Mod. Phys. A 35, 2030012 (2020).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 8.

    Ho, D. L.-J. & Rajantie, A. Classical production of ’t Hooft–Polyakov monopoles from magnetic fields. Phys. Rev. D 101, 055003 (2020).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 9.

    Ho, D. L.-J. & Rajantie, A. Instanton solution for Schwinger production of ’t Hooft–Polyakov monopoles. Phys. Rev. D 103, 115033 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 10.

    Gould, O., Ho, D. L.-J. & Rajantie, A. Towards Schwinger production of magnetic monopoles in heavy-ion collisions. Phys. Rev. D 100, 015041 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Huang, X.-G. Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review. Rep. Prog. Phys. 79, 076302 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    MoEDAL Collaboration. Magnetic monopole search with the full MoEDAL trapping detector in 13 TeV pp collisions interpreted in photon-fusion and Drell–Yan production. Phys. Rev. Lett. 123, 021802 (2019).

    ADS 

    Google Scholar
     

  • 13.

    Guth, A. H. Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 14.

    Witten, E. Baryons in the 1/N expansion. Nucl. Phys. B 160, 57–115 (1979).

    ADS 

    Google Scholar
     

  • 15.

    Drukier, A. K. & Nussinov, S. Monopole pair creation in energetic collisions: is it possible? Phys. Rev. Lett. 49, 102–105 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Blagojević, M. & Senjanović, P. The quantum field theory of electric and magnetic charge. Phys. Rep. 157, 233–346 (1988).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 17.

    Cho, Y. & Maison, D. Monopole configuration in Weinberg–Salam model. Phys. Lett. B 391, 360–365 (1997).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 18.

    Kimm, K., Yoon, J. H. & Cho, Y. M. Finite energy electroweak dyon. Eur. Phys. J. C 75, 67 (2015).

    ADS 

    Google Scholar
     

  • 19.

    Ellis, J., Mavromatos, N. E. & You, T. The price of an electroweak monopole. Phys. Lett. B 756, 29–35 (2016).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 20.

    Mavromatos, N. E. & Sarkar, S. Magnetic monopoles from global monopoles in the presence of a Kalb–Ramond field. Phys. Rev. D 95, 104025 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 21.

    Arunasalam, S. & Kobakhidze, A. Electroweak monopoles and the electroweak phase transition. Eur. Phys. J. C 77, 444 (2017).

    ADS 

    Google Scholar
     

  • 22.

    Mavromatos, N. E. & Sarkar, S. Regularized Kalb–Ramond magnetic monopole with finite energy. Phys. Rev. D 97, 125010 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 23.

    Hung, P. Q. Topologically stable, finite-energy electroweak-scale monopoles. Nucl. Phys. B 962, 115278 (2021).

    CAS 
    MATH 

    Google Scholar
     

  • 24.

    Sauter, F. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931).

    ADS 
    MATH 

    Google Scholar
     

  • 25.

    Heisenberg, W. & Euler, H. Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714–732 (1936).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 26.

    Kaspi, V. M. & Beloborodov, A. M. Magnetars. Ann. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Gould, O., Ho, D. L.-J. & Rajantie, A. Schwinger pair production of magnetic monopoles: momentum distribution for heavy-ion collisions. Phys. Rev. D 104, 015033 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 28.

    MoEDAL Collaboration. First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions. Phys. Rev. Lett. 126, 071801 (2021).

    ADS 

    Google Scholar
     

  • 29.

    Milton, K. A. Theoretical and experimental status of magnetic monopoles. Rep. Prog. Phys. 69, 1637–1711 (2006).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 30.

    The MoEDAL Collaboration. The physics programme of the MoEDAL experiment at the LHC. Int. J. Mod. Phys. A 29, 1430050 (2014).


    Google Scholar
     

  • 31.

    Gamberg, L., Kalbfleisch, G. R. & Milton, K. A. Direct and indirect searches for low-mass magnetic monopoles. Found. Phys. 30, 543–565 (2000).


    Google Scholar
     

  • 32.

    Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    The MoEDAL Collaboration. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton–proton collisions at the LHC. J. High Energy Phys. 2016, 67 (2016).


    Google Scholar
     

  • 34.

    He, Y. D. Search for a Dirac magnetic monopole in high energy nucleus–nucleus collisions. Phys. Rev. Lett. 79, 3134–3137 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Gould, O. & Rajantie, A. Magnetic monopole mass bounds from heavy-ion collisions and neutron stars. Phys. Rev. Lett. 119, 241601 (2017).

    ADS 

    Google Scholar
     

  • 36.

    ATLAS Collaboration. Search for magnetic monopoles in √s = 7 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett. 109, 261803 (2012).

    ADS 

    Google Scholar
     

  • 37.

    ATLAS Collaboration. Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp collisions with the ATLAS detector. Phys. Rev. D 93, 052009 (2016).

    ADS 

    Google Scholar
     

  • 38.

    ATLAS Collaboration. Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton–proton collisions with the ATLAS Detector. Phys. Rev. Lett. 124, 031802 (2020).

    ADS 

    Google Scholar
     

  • 39.

    Kobayashi, T. Monopole–antimonopole pair production in primordial magnetic fields. Phys. Rev. D 104, 043501 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 40.

    Clemencic, M. et al. The LHCb simulation application, Gauss: design, evolution and experience. J. Phys. Conf. Ser. 331, 032023 (2011).


    Google Scholar
     

  • 41.

    King, M. Simulation of the MoEDAL experiment. Nucl. Part. Phys. Proc. 273–275, 2560–2562 (2016).


    Google Scholar
     

  • 42.

    Kharzeev, D. E., McLerran, L. D. & Warringa, H. J. The effects of topological charge change in heavy ion collisions: “event by event P and CP violation”. Nucl. Phys. A 803, 227–253 (2008).

    ADS 

    Google Scholar
     

  • 43.

    Gursoy, U., Kharzeev, D. & Rajagopal, K. Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C 89, 054905 (2014).

    ADS 

    Google Scholar
     

  • 44.

    ALICE Collaboration. Centrality determination of Pb–Pb collisions at (sqrt{{s}_{{rm{NN}}}}) = 2.76 TeV with ALICE. Phys. Rev. C 88, 044909 (2013).

    ADS 

    Google Scholar
     

  • 45.

    ALICE Collaboration. Centrality dependence of particle production in p–Pb collisions at (sqrt{{s}_{{rm{NN}}}}) = 5.02 TeV. Phys. Rev. C 91, 064905 (2015).

    ADS 

    Google Scholar
     

  • 46.

    Deng, W.-T. & Huang, X.-G. Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012).

    ADS 

    Google Scholar
     

  • 47.

    Baltz, A. J. The physics of ultraperipheral collisions at the LHC. Phys. Rep. 458, 1–171 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Kruglov, S. I. Pair production and vacuum polarization of vector particles with electric dipole moments and anomalous magnetic moments. Eur. Phys. J. C 22, 89–98 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Gould, O. & Rajantie, A. Thermal Schwinger pair production at arbitrary coupling. Phys. Rev. D 96, 076002 (2017).

    ADS 

    Google Scholar
     

  • 50.

    Wolschin, G. Aspects of relativistic heavy-ion collisions. Universe 6, 61 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Tuchin, K. Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions. Phys. Rev. C 88, 024911 (2013).

    ADS 

    Google Scholar
     

  • 52.

    Inghirami, G. et al. Magnetic fields in heavy ion collisions: flow and charge transport. Eur. Phys. J. C 80, 293 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Cecchini, S., Patrizii, L., Sahnoun, Z., Sirri, G. & Togo, V. Energy losses of magnetic monopoles in aluminum, iron and copper. Preprint at https://arxiv.org/abs/1606.01220 (2016).

  • 54.

    Alvarez, L. W. et al. A magnetic monopole detector utilizing superconducting elements. Rev. Sci. Instrum. 42, 326–330 (1971).

    ADS 

    Google Scholar
     

  • 55.

    De Roeck, A. et al. Development of a magnetometer-based search strategy for stopped monopoles at the large hadron collider. Eur. Phys. J. C 72, 2212 (2012).

    ADS 

    Google Scholar
     

  • 56.

    Malkus, W. V. R. The interaction of the Dirac magnetic monopole with matter. Phys. Rev. 83, 899–905 (1951).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 57.

    Bracci, L. & Fiorentini, G. Binding of magnetic monopoles and atomic nuclei. Phys Lett. B 124, 493–496 (1983).

    ADS 

    Google Scholar
     

  • 58.

    Bracci, L. & Fiorentini, G. Interactions of magnetic monopoles with nuclei and atoms: formation of bound states and phenomenological consequences. Nucl. Phys. B 232, 236–262 (1984).

    ADS 

    Google Scholar
     

  • 59.

    Bracci, L. & Fiorentini, G. On the capture of protons by magnetic monopoles. Nucl. Phys. B 249, 519–532 (1985).

    ADS 

    Google Scholar
     

  • 60.

    Olaussen, K. & Sollie, R. Form factor effects on nucleus–magnetic monopole binding. Nucl. Phys. B 255, 465–479 (1985).

    ADS 

    Google Scholar
     

  • 61.

    Olaussen, K., Olsen, H. A., Osland, P. & Øverbø, I. Proton capture by magnetic monopoles. Phys. Rev. Lett. 52, 325–328 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Goebel, C. Binding of monopole to nuclei. In Monopole ’83 (ed. Stone, J. L.) 333–337 (Plenum, 1984).

  • 63.

    Ruijgrok, Th. W., Tjon, J. A. & Wu, T. T. Monopole chemistry. Phys. Lett. B 129, 209–212 (1983).

    ADS 

    Google Scholar
     

  • 64.

    Ruijgrok, T. Binding of matter to a magnetic monopole. Acta Phys. Pol. B 15, 305–314 (1983).


    Google Scholar
     

  • 65.

    Lipkin, H. J. Effects of magnetic monopoles on nuclear wave functions and possible catalysis of nuclear beta decay and spontaneous fission. Phys. Lett. B 133, 347–350 (1983).

    ADS 

    Google Scholar
     

  • 66.

    Lipkin, H. J. Monoponucleosis — the wonderful things that monopoles can do to nuclei if they are there. In Monopole ’83 (ed. Stone, J. L.) 347–358 (Plenum, 1984).

  • Source link