May 29, 2024
Selective control of parasitic nematodes using bioactivated nematicides – Nature

Selective control of parasitic nematodes using bioactivated nematicides – Nature

  • Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).

    Article 

    Google Scholar
     

  • Cunningham, S. A. et al. To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agric. Ecosyst. Environ. 173, 20–27 (2013).

    Article 

    Google Scholar
     

  • Popp, J., Petö, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33, 243–255 (2013).

    Article 

    Google Scholar
     

  • Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).

    Article 

    Google Scholar
     

  • Singh, S. K., Hodda, M. & Ash, G. J. Plant-parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. EPPO Bull. 43, 334–374 (2013).

    Article 

    Google Scholar
     

  • Abad, P. et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 26, 909–915 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, R. K. in Nematology in South Africa: A View from the 21st Century (eds Fourie, H. et al.) 129–150 (Springer, 2017).

  • Desaeger, J., Wram, C. & Zasada, I. New reduced-risk agricultural nematicides—rationale and review. J. Nematol. 52, e2020-911 (2020).

    Article 

    Google Scholar
     

  • EU Pesticides Database, https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (European Commission).

  • NPIC Product Research Online (NPRO), http://npic.orst.edu/NPRO/# (National Pesticide Information Center, accessed 25 July 2022).

  • Jordan, S., Nischwitz, C., Ramirez, R. & Gordillo, L. F. Managing the spread of alfalfa stem nematodes (Ditylenchus dipsaci): the relationship between crop rotation periods and pest reemergence. Nat. Resour. Model. 30, e12083 (2017).

    Article 

    Google Scholar
     

  • d’Errico, G., Giacometti, R., Roversi, P. F., d’Errico, F. P. & Woo, S. L. Mode of action and efficacy of iprodione against the root-knot nematode Meloidogyne incognita. Ann. Appl. Biol. 171, 506–510 (2017).

    Article 

    Google Scholar
     

  • Burns, A. R. et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat. Commun. 6, 7485 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Culetto, E. et al. The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor α subunit. J. Biol. Chem. 279, 42476–42483 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Y., Xiao, S. H. & Aroian, R. V. The new anthelmintic tribendimidine is an l-type (levamisole and pyrantel) nicotinic acetylcholine receptor agonist. PLoS Negl. Trop. Dis. 3, e499 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driscoll, M., Dean, E., Reilly, E., Bergholz, E. & Chalfie, M. Genetic and molecular analysis of a Caenorhabditis elegans β-tubulin that conveys benzimidazole sensitivity. J. Cell Biol. 109, 2993–3003 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dent, J. A., Smith, M. M., Vassilatis, D. K. & Avery, L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 97, 2674–2679 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminsky, R. et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 452, 176–180 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guest, M. et al. The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int. J. Parasitol. 37, 1577–1588 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawasaki, I., Jeong, M. H., Oh, B. K. & Shim, Y. H. Apigenin inhibits larval growth of Caenorhabditis elegans through DAF-16 activation. FEBS Lett. 584, 3587–3591 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rand, J. B. & Russell, R. L. Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 106, 227–248 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y., Platzer, E. G., Bellier, A. & Aroian, R. V. Discovery of a highly synergistic anthelmintic combination that shows mutual hypersusceptibility. Proc. Natl. Acad. Sci. USA 107, 5955–5960 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns, A. R. et al. A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat. Chem. Biol. 6, 549–557 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz de Montellano, P. R. Cytochrome P450-activated prodrugs. Future Med. Chem. 5, 213–228 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leung, M. C. K., Goldstone, J. V., Boyd, W. A., Freedman, J. H. & Meyer, J. N. Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol. Sci. 118, 444–453 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harlow, P. H., Perry, S. J., Stevens, A. J. & Flemming, A. J. Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans. Sci Rep. 8, 13333 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter, T. D. New insights into the role of cytochrome P450 reductase (POR) in microsomal redox biology. Acta Pharm. Sin. B 2, 102–106 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kalgutkar, A. S. et al. Reactive metabolite trapping studies on imidazo- and 2-methylimidazo[2,1-b]thiazole-based inverse agonists of the ghrelin receptor. Drug Metab. Dispos. 7, 1375–1388 (2013).

    Article 

    Google Scholar
     

  • Ryan, E. et al. Evidence for the in vitro bioactivation of aminopyrazole derivatives: trapping reactive aminopyrazole intermediates using glutathione ethyl ester in human liver microsomes. Chem. Res. Toxicol. 28, 1747–1752 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, A. J. L. & Hanigan, M. H. Metabolism of glutathione S-conjugates: multiple pathways. Compr. Toxicol. https://doi.org/10.1016/B978-0-12-801238-3.01973-5 (2018).

  • Ferguson, G. D. & Bridge, W. J. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol. 24, 101171 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blum, R., Meyer, K. C., Wünschmann, J., Lendzian, K. J. & Grill, E. Cytosolic action of phytochelatin synthase. Plant Physiol. 153, 159–169 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Essig, Y. J., Webb, S. M. & Stürzenbaum, S. R. Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans. Int. J. Mol. Sci. 17, 257 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giustarini, D., Milzani, A., Dalle-Donne, I., Tsikas, D. & Rossi, R. N-Acetylcysteine ethyl ester (NACET): a novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential. Biochem. Pharmacol. 84, 1522–1533 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trudgill, D. L. & Blok, V. C. Apomictic, polyphagus root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 39, 53–77 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oka, Y. From old-generation to next-generation nematicides. Agronomy 10, 1387 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Devguard 500SC Label,https://za.uplonline.com/download_links/awyXPTiWs8OT3dGCErYdw3nnA3nLnwxpCpUn7jzb.pdf (deVGen/UPL).

  • Asif, M., Rehman, B., Parihar, K., Ganai, M. A. & Siddiqui, M. A. Effect of various physico-chemical factors on the incidence of root knot nematode Meloidogyne spp. infesting tomato in District Aligarh (Uttar Pradesh) India. J. Plant Sci. 10, 234–243 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Barker, K. R., Schmitt, D. P. & Imbriani, J. L. in An Advanced Treatise on Meloidogyne Volume II: Methodology (eds Barker, K. R. et al.) 135–148 (North Carolina State University Department of Plant Pathology and the United States Agency for International Development, 1985).

  • Marion, M. J., Hantz, O. & Durantel, D. in Hepatocytes: Methods and Protocols (ed. Maurel, P.) 261–272 (Humana Press, 2010).

  • Rocher, F. et al. Salicylic acid transport in Ricinus communis involves a pH-dependent carrier system in addition to diffusion. Plant Physiol. 150, 2081–2091 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wram, C. L., Hesse, C. N. & Zasada, I. A. Transcriptional response of Meloidogyne incognita to non-fumigant nematicides. Sci Rep. 12, 9814 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dara, S. K. The new integrated pest management paradigm for the modern age. J. Integr. Pest. Manag. 10, 12 (2019).

    Article 

    Google Scholar
     

  • Cardarelli, M., Woo, S. L., Rouphael, Y. & Colla, G. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants 11, 259 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Migunova, V. D. & Sasanelli, N. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 10, 389 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slomczynska, U. et al. in Discovery and Synthesis of Crop Protection Products (eds. Maienfisch, P. & Stevenson, T.) 129–147 (American Chemical Society, 2015).

  • Jensen, J. P., Kalwa, U., Pandey, S. & Tylka, G. L. Avicta and clariva affect the biology of the soybean cyst nematode, Heterodera glycines. Plant Dis. 102, 2480–2486 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmed, S., Zhou, Z., Zhou, J. & Chen, S.-Q. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinformatics 14, 298–313 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nixon, S. A. et al. Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. Int. J. Parasitol. Drugs Drug Resist. 14, 8–16 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, J. A. & Fleming, J. T. in Caenorhabditis elegans: Modern Biological Analysis of an Organism (eds Epstein, H. F. & Shakes, D. C.) 3–29 (Academic Press, 1995).

  • Burns, A. R. et al. High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat. Protoc. 1, 1906–1914 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demeler, J., Kuttler, U. & von Samson-Himmelstjerna, G. Veterinary parasitology adaptation and evaluation of three different in vitro tests for the detection of resistance to anthelmintics in gastro intestinal nematodes of cattle. Vet. Parasitol. 170, 61–70 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartley, D. J. et al. A survey of anthelmintic resistant nematode parasites in Scottish sheep flocks. Vet. Parasitol. 117, 61–71 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Jindapunnapat, K., Reetz, N. D., Macdonald, M. H., Bhagavathy, G. & Meyer, S. L. F. Activity of vetiver extracts and essential oil against Meloidogyne incognita. J. Nematol. 50, 147–162 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wram, C. L. & Zasada, I. A. Short-term effects of sublethal doses of nematicides on Meloidogyne incognita. Phytopathology 109, 1605–1613 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, S. L. F., Chauhan, K. R. & MacDonald, M. H. Evaluation of roselle (Hibiscus sabdariffa) leaf and pomegranate (Punica granatum) fruit rind for activity against Meloidogyne incognita. Nematropica 46, 85–96 (2016).


    Google Scholar
     

  • Meyer, S. L. F. et al. Plantago lanceolata and Plantago rugelii extracts are toxic to Meloidogyne incognita but not to certain microbes. J. Nematol. 38, 333–338 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, F. Getting started with yeast. Methods Enzymol. 350, 3–41 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howe, K. L. et al. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Blanc-Mathieu, R. et al. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet. 13, e1006777 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WormBase release WS283, http://www.wormbase.org (Alliance of Genome Resources, accessed 16 December 2021).

  • Wram, C. L. & Zasada, I. Differential response of Meloidogyne, Pratylenchus, Globodera, and Xiphinema species to the nematicide fluazaindolizine. Phytopathology. 110, 2003–2009 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chundawat, T. S., Kumari, P., Sharma, N. & Bhagat, S. Strategic synthesis and in vitro antimicrobial evaluation of novel difluoromethylated 1-(1,3-diphenyl-1H-pyrazol-4-yl)-3,3-difluoro-1,3-dihydro-indol-2-ones. Med. Chem. Res. 25, 2335–2348 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pyl, T., Giebelmann, R. & Beyer, H. Über bicyclische heterocyclen mit gemeinsamem stickstoffatom, I. Zur kenntnis der imidazo[2.1-b]thiazole. Justus Liebigs Ann. Chem. 643, 145–153 (1961).

    Article 
    CAS 

    Google Scholar
     

  • Huang, G. et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl Acad. Sci. USA 103, 14302–14306 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mota, F. C. et al. New sources of resistance to Meloidogyne incognita race 3 in wild cotton accessions and histological characterization of the defence mechanisms. Plant Pathol. 62, 1173–1183 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Basso, M. F. et al. MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Sci Rep. 10, 6991 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajihassani, A., Rutter, W. B. & Luo, X. Resistant pepper carrying N, Me1, and Me3 have different effects on penetration and reproduction of four major Meloidogyne species. J. Nematol. 51, 1–9 (2019).

    PubMed 

    Google Scholar
     

  • de Souza, J. D. A. et al. Knocking-down Meloidogyne incognita proteases by plant-delivered dsRNA has negative pleiotropic effect on nematode vigor. PLoS ONE 8, e85364 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Burns, A. R. and Roy, P. J. Python and R scripts for the generation of dose–response heatmaps and heatmaps of HPLC chromatograms. Zenodo https://doi.org/10.5281/zenodo.7731172 (2023).

  • Source link