May 19, 2024
Selective methane oxidation by molecular iron catalysts in aqueous medium – Nature

Selective methane oxidation by molecular iron catalysts in aqueous medium – Nature

  • Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol—a critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Riaz, A., Zahedi, G. & Klemeš, J. J. A review of cleaner production methods for the manufacture of methanol. J. Clean. Prod. 57, 19–37 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, B., Albarracín-Suazo, S., Pagán-Torres, Y. & Nikolla, E. Advances in methane conversion processes. Catal. Today 285, 147–158 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shilov, A. E. & Shul’pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mironov, O. A. et al. Using reduced catalysts for oxidation reactions: mechanistic studies of the “Periana-catalytica” system for CH4 Oxidation. J. Am. Chem. Soc. 135, 14644–14658 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gunsalus, N. J. et al. Homogeneous functionalization of methane. Chem. Rev. 117, 8521–8573 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horn, R. & Schlögl, R. Methane activation by heterogeneous catalysis. Catal. Lett. 145, 23–39 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Arakawa, H. et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101, 953–996 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenzweig, A. C., Frederick, C. A., Lippard, S. J. & Nordlund, P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whittington, D. A., Rosenzweig, A. C., Frederick, C. A. & Lippard, S. J. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. Biochemistry 40, 3476–3482 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, R. & Lipscomb, J. D. Small-molecule tunnels in metalloenzymes viewed as extensions of the active site. Acc. Chem. Res. 54, 2185–2195 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, T., Soorholtz, M., Bilke, M. & Schüth, F. Selective methane oxidation catalyzed by platinum salts in oleum at turnover frequencies of large-scale industrial processes. J. Am. Chem. Soc. 138, 12395–12400 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Díaz-Urrutia, C. & Ott, T. Activation of methane: a selective industrial route to methanesulfonic acid. Science 363, 1326–1329 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds 1st edn (CRC, 2002).

  • Agarwal, N. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Snyder, B. E. R. et al. The active site of low-temperature methane hydroxylation in iron-containing zeolite. Nature 536, 317–321 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan, J. et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y.-H., Wu, C.-Q., Sung, P.-H., Chan, S. I. & Chen, P. P.-Y. Turnover of a methane oxidation tricopper cluster catalyst: implications for the mechanism of the particulate methane monooxygenase (pMMO). ChemCatChem 12, 3088–3096 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sorokin, A. B., Kudrik, E. V. & Bouchu, D. Bio-inspired oxidation of methane in watercatalysed by N-bridged diiron phthalocyanine complex. Chem. Commun. 2008, 2562–2564 (2008).

    Article 

    Google Scholar
     

  • İşci, Ü. et al. Site-selective formation of an iron(IV)–oxo species at the more electron-rich iron atom of heteroleptic μ-nitride diiron phthalocyanines. Chem. Sci. 6, 5063–5075 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afanasiev, P. & Sorokin, A. B. μ-Nitrido diiron macrocyclic platform: particular structure for particular catalysis. Acc. Chem. Res. 49, 583–593 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedle, S., Reisner, E. & Lippard, S. J. Current challenges of modelling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39, 2768–2779 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujisaki, H. et al. Selective catalytic 2e-oxidation of organic substrates by an FeII complex having an N-heterocyclic carbene ligand in water. Chem. Commun. 56, 9783–9786 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Garal, L., Dutasta, J.-P. & Collet, A. Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution. Angew. Chem. Int. Ed. 32, 1169–1171 (1993).

    Article 

    Google Scholar
     

  • Kano, K., Kitae, T., Shimofuri, Y., Tanaka, N. & Mineta, Y. Complexation of polyvalent cyclodextrin ions with oppositely charged guests: entropically favourable complexation due to dehydration. Chem. Eur. J. 6, 2705–2713 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Branda, N., Wyler, R. & Rebek, J. Jr Encapsulation of methane and other small molecules in a self-assembling superstructure. Science 263, 1267–1268 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brazeau, B. J., Wallar, B. J. & Lipscomb, J. D. Unmasking of deuterium kinetic isotope effects on the methane monooxygenase compound Q reaction by site-directed mutagenesis of component B. J. Am. Chem. Soc. 123, 10421–10422 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J.-L., Zhang, X. & Huang, X.-R. Mechanism of benzene hydroxylation by high-valent bare FeIV=O2+: explicit electronic structure analysis. Phys. Chem. Chem. Phys. 14, 246–256 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimoyama, Y. & Kojima, T. Metal–oxyl species and their possible roles in chemical oxidations. Inorg. Chem. 58, 9517–9542 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416–421 (1953).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, Y., Peterson, P. W., Hadad, C. M. & Badjić, J. D. On the encapsulation of hydrocarbon components of natural gas within molecular baskets in water. The role of C–H···π interactions and the host’s conformational dynamics in the process of encapsulation. Chem. Commun. 50, 9086–9089 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Duan, Z. & Mao, S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim. Cosmochim. Acta 70, 3369–3386 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rohde, J.-U. et al. Crystallographic and spectroscopic characterization of a nonheme Fe(IV)–O complex. Science 299, 1037–1039 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sastri, C. V. et al. Axial ligand substituted nonheme FeIV=O complexes: observation of near-UV LMCT bands and Fe=O Raman vibrations. J. Am. Chem. Soc. 127, 12494–12495 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andris, E. et al. Trapping iron(III)–oxo species at the boundary of the “oxo wall”: insights into the nature of the Fe(III)–O bond. J. Am. Chem. Soc. 140, 14391–14400 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, D. F. & Jakubovic, D. Water-soluble hexadentate Schiff-base ligands assequestrating agents for iron(III) and gallium(III). J. Chem. Soc. Dalton Trans. 1988, 2927–2933 (1988).

    Article 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16 revision C.01 (Gaussian, 2009).

  • Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wachters, A. J. H. Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 52, 1033–1036 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hay, P. J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J. Chem. Phys. 66, 4377–4384 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dunning, T. H. Jr & Hay, P. J. in Modern Theoretical Chemistry Vol. 3 (ed. Schaefer, H. F. III), (Plenum, 1977).

  • Cossi, M., Barone, V., Cammi, R. & Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327–335 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Frost, A. A. & Pearson, R. G. Kinetics and Mechanism (Wiley, 1961).

  • Source link