May 5, 2024
Shock cooling of a red-supergiant supernova at redshift 3 in lensed images – Nature

Shock cooling of a red-supergiant supernova at redshift 3 in lensed images – Nature

  • Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. & Murdin, P.) 967–1015 (Springer, 2017).

  • Garnavich, P. M. et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016).

    ADS 

    Google Scholar
     

  • Arcavi, I. et al. SN 2011dh: discovery of a type IIb supernova from a compact progenitor in the nearby galaxy M51. Astrophys. J. Lett. 742, L18 (2011).

    ADS 

    Google Scholar
     

  • Morales-Garoffolo, A. et al. SN 2011fu: a type IIb supernova with a luminous double-peaked light curve. Mon. Not. R. Astron. Soc 454, 95–114 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Ben-Ami, S. et al. Discovery and early multi-wavelength measurements of the energetic type Ic supernova PTF12gzk: a massive-star explosion in a dwarf host galaxy. Astrophys. J. Lett. 760, L33 (2012).

    ADS 

    Google Scholar
     

  • Valenti, S. et al. The first month of evolution of the slow-rising type IIP SN 2013ej in M74. Mon. Not. R. Astron. Soc. Lett. 438, L101–L105 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Bersten, M. C. et al. A surge of light at the birth of a supernova. Nature 554, 497–499 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tartaglia, L. et al. The progenitor and early evolution of the type IIb SN 2016gkg. Astrophys. J. Lett. 836, L12 (2017).

    ADS 

    Google Scholar
     

  • Arcavi, I. et al. Constraints on the progenitor of SN 2016gkg from its shock-cooling light curve. Astrophys. J. Lett. 837, L2 (2017).

    ADS 

    Google Scholar
     

  • Piro, A. L., Haynie, A. & Yao, Y. Shock cooling emission from extended material revisited. Astrophys. J. 909, 209 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Szalai, T. et al. The type II-P supernova 2017eaw: from explosion to the nebular phase. Astrophys. J. 876, 19 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Rui, L. et al. Probing the final-stage progenitor evolution for type IIP supernova 2017eaw in NGC 6946. Mon. Not. R. Astron. Soc 485, 1990–2000 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Xiang, D. et al. Observations of SN 2017ein reveal shock breakout emission and a massive progenitor star for a type Ic supernova. Astrophys. J. 871, 176 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Soumagnac, M. T. et al. SN 2018fif: the explosion of a large red supergiant discovered in its infancy by the Zwicky Transient Facility. Astrophys. J. Letters 902, 6 (2020).

    CAS 

    Google Scholar
     

  • Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).

    ADS 

    Google Scholar
     

  • Struble, M. F. & Rood, H. J. A compilation of redshifts and velocity dispersions for Abell clusters (Epoch 1991.2). Astrophys. J. Suppl. Ser. 77, 363–377 (1991).


    Google Scholar
     

  • Benítez, N. Bayesian photometric redshift estimation. Astrophys. J. 536, 571–583 (2000).


    Google Scholar
     

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).


    Google Scholar
     

  • Kawamata, R. et al. Size–luminosity relations and UV luminosity functions at z = 6–9 simultaneously derived from the complete Hubble Frontier Fields data. Astrophys. J. 855, 4 (2018).

    ADS 

    Google Scholar
     

  • Kawamata, R., Oguri, M., Ishigaki, M., Shimasaku, K. & Ouchi, M. Precise strong lensing mass modeling of four Hubble Frontier Field clusters and a sample of magnified high-redshift galaxies. Astrophys. J. 819, 114 (2016).

    ADS 

    Google Scholar
     

  • Oguri, M. The mass distribution of SDSS J1004.4112 revisited. Publ Astron. Soc. Jpn 62, 1017–1024 (2010).


    Google Scholar
     

  • Oguri, M. Fast calculation of gravitational lensing properties of elliptical Navarro–Frenk–White and Hernquist density profiles. Publ. Astron. Soc. Pacif. 133, 074504 (2021).

    ADS 

    Google Scholar
     

  • Nakar, E. & Sari, R. Early supernovae light curves following the shock breakout. Astrophys. J. 725, 904–921 (2010).


    Google Scholar
     

  • Rabinak, I. & Waxman, E. The early UV/optical emission from core-collapse supernovae. Astrophys. J. 728, 63 (2011); erratum 770, 81 (2013).

    ADS 

    Google Scholar
     

  • Nakar, E. & Piro, A. L. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes. Astrophys. J. 788, 193 (2014).

    ADS 

    Google Scholar
     

  • Piro, A. L. Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015).

    ADS 

    Google Scholar
     

  • Sapir, N. & Waxman, E. UV/optical emission from the expanding envelopes of type II supernovae. Astrophys. J. 838, 130 (2017).

    ADS 

    Google Scholar
     

  • Morozova, V., Piro, A. L. & Valenti, S. Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838, 28 (2017).

    ADS 

    Google Scholar
     

  • Morozova, V., Piro, A. L. & Valenti, S. Measuring the progenitor masses and dense circumstellar material of type II supernovae. Astrophys. J. 858, 15 (2018).

    ADS 

    Google Scholar
     

  • Margalit, B. Analytic light curves of dense CSM shock breakout and cooling. Astrophys. J. 933, 238 (2022).

    ADS 

    Google Scholar
     

  • Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search – II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc 412, 1441–1472 (2011).

    ADS 

    Google Scholar
     

  • Kelly, P. L. et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science 347, 1123–1126 (2015).


    Google Scholar
     

  • Goobar, A. et al. iPTF16geu: a multiply imaged, gravitationally lensed type Ia supernova. Science 356, 291–295 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodney, S. A. et al. A gravitationally lensed supernova with an observable two-decade time delay. Nat. Astron. 5, 1118–1125 (2021).

  • Oguri, M. Strong gravitational lensing of explosive transients. Rep. Prog. Phys. 82, 126901 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Foxley-Marrable, M. et al. Observing the earliest moments of supernovae using strong gravitational lenses. Mon. Not. R. Astron. Soc 495, 4622–4637 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Grogin, N. A. et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

    ADS 

    Google Scholar
     

  • Postman, M. et al. The cluster lensing and supernova survey with Hubble: an overview. Astrophys. J. Suppl. Ser. 199, 25 (2012).

    ADS 

    Google Scholar
     

  • Strolger, L. G. et al. The rate of core collapse supernovae to redshift 2.5 from the CANDELS and CLASH supernova surveys. Astrophys. J. 813, 93 (2015).

    ADS 

    Google Scholar
     

  • Schmidt, B. P. et al. The distance of five type II supernovae using the expanding photosphere method and the value of H0. Astrophys. J. 432, 42–48 (1994).


    Google Scholar
     

  • Hamuy, M. & Pinto, P. A. Type II supernovae as standardized candles. Astrophys. J. 566, L63–L66 (2002).


    Google Scholar
     

  • Kelly, P. L. & Kirshner, R. P. Core-collapse supernovae and host galaxy stellar populations. Astrophys. J. 759, 107 (2012).

    ADS 

    Google Scholar
     

  • Drout, M. R. et al. The first systematic study of type Ibc supernova multi-band light curves. Astron. J. 741, 97 (2011); erratum 753, 180 (2012).


    Google Scholar
     

  • Prentice, S. J. et al. The bolometric light curves and physical parameters of stripped-envelope supernovae. Mon. Not. R. Astron. Soc 458, 2973–3002 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    ADS 

    Google Scholar
     

  • Salpeter, E. D. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955).


    Google Scholar
     

  • Fruchter, A. S., Hack, W., Dencheva, M., Droettboom, M., & Greenfield, P. BetaDrizzle: a redesign of the MultiDrizzle package. In 2010 Space Telescope Science Institute Calibration Workshop (eds Deustua, S. & Oliveira, C.) 382–387 (Space Telescope Science Institute, 2010).

  • Jones, D. O., Scolnic, D. M., & Rodney, S. A. PythonPhot: simple DAOPHOT-type photometry in Python. Astrophysics Source Code Library https://www.ascl.net/1501.010 (2015).

  • Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacif. 99, 191–222 (1987).


    Google Scholar
     

  • Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed structural decomposition of galaxy images. Astron. J. 124, 266–293 (2002).


    Google Scholar
     

  • Dong, S. et al. ASASSN-15lh: a highly super-luminous supernova. Science 351, 257–260 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradač, M. et al. Hubble Frontier Field photometric catalogues of Abell 370 and RXC J2248.7-4431: multiwavelength photometry, photometric redshifts, and stellar properties. Mon. Not. R. Astron. Soc. 489, 99–107 (2019).


    Google Scholar
     

  • Maraston, C. & Strömbäck, G. Stellar population models at high spectral resolution. Mon. Not. R. Astron. Soc 418, 2785–2811 (2011).


    Google Scholar
     

  • Schulze, S. et al. The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astron. J. Suppl. Ser. 255, 29 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A moderate-resolution, high-throughput CCD channel for the MMT spectrograph. Publ. Astron. Soc. Pacif. 101, 713–724 (1989).


    Google Scholar
     

  • Rothberg, B. et al. Current status of the facility instrumentation suite at the Large Binocular Telescope Observatory. In Proc. SPIE 10702: Ground-based and Airborne Instrumentation for Astronomy VII (eds Evans, C. J. et al.) 1070205 (SPIE, 2018).

  • McLean, I. S. et al. MOSFIRE, the multi-object spectrometer for infrared exploration at the Keck Observatory. In Proc. SPIE 8446, Ground-based and Airborne Instrumentation for Astronomy IV (eds McLean, I. S. et al.) 84460J (SPIE, 2012).

  • Prochaska, J. X. et al. PypeIt: the Python spectroscopic data reduction pipeline. Preprint at https://arxiv.org/abs/2005.06505 (2020).

  • Prochaska, J. X. et al. pypeit/PypeIt: release 1.0.0. Zenodo https://doi.org/10.5281/zenodo.3743493 (2020).

  • Konidaris, N. & Steidel, C. MOSFIRE DRP https://keck-datareductionpipelines.github.io/MosfireDRP/#mosfire-drp (2018).

  • Wilkinson, D. M., Maraston, C., Goddard, D., Thomas, D. & Parikh, T. FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code. Mon. Not. R. Astron. Soc 472, 4297–4326 (2017).


    Google Scholar
     

  • Reddy, N. A. et al. The MOSDEF Survey: significant evolution in the rest-frame optical emission line equivalent widths of star-forming galaxies at z = 1.4–3.8. Astrophys. J. 869, 92 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Keeton, C. R. On modeling galaxy-scale strong lens systems. Gen. Rel. Grav. 42, 2151–2176 (2010).

    MathSciNet 
    MATH 

    Google Scholar
     

  • McCully, C., Keeton, C. R., Wong, K. C. & Zabludoff, A. I. A new hybrid framework to efficiently model lines of sight to gravitational lenses. Mon. Not. R. Astron. Soc 443, 3631–3642 (2014).


    Google Scholar
     

  • Ammons, S. M., Wong, K. C., Zabludoff, A. I. & Keeton, C. R. Mapping compound cosmic telescopes containing multiple projected cluster-scale halos. Astron. J. 781, 2 (2014).


    Google Scholar
     

  • Johnson, T. L. et al. Lens models and magnification maps of the six Hubble Frontier Fields clusters. Astron. J. 797, 48 (2014).


    Google Scholar
     

  • Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007).

    ADS 

    Google Scholar
     

  • Faber, S. M. & Jackson, R. E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 204, 668–683 (1976).

    ADS 
    CAS 

    Google Scholar
     

  • Witt, H. J. & Mao, S. On the magnification relations in quadruple lenses: a moment approach. Mon. Not. R. Astron. Soc 311, 689–697 (2000).

    ADS 

    Google Scholar
     

  • Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    ADS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. AT2018cow: a luminous millimeter transient. Astrophys. J. 871, 73 (2019); erratum 935, 62 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Margutti, R. et al. An embedded X-ray source shines through the aspherical AT2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).


    Google Scholar
     

  • Chen, W. Additional data for ‘Shock cooling of a red-supergiant supernova at redshift 3 in lensed images’. Zenodo https://doi.org/10.5281/zenodo.6725770 (2022).

  • Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009).


    Google Scholar
     

  • Schreiber, C. & Dickinson, H. FAST++ v1.3.1. GitHub https://github.com/cschreib/fastpp (2021).

  • Morishita, T. et al. Characterizing intracluster light in the Hubble Frontier Fields. Astrophys. J. 846, 139 (2017).

    ADS 

    Google Scholar
     

  • Diego, J. M. et al. Dark matter under the microscope: constraining compact dark matter with caustic crossing events. Astrophys. J. 857, 25 (2018).

    ADS 

    Google Scholar
     

  • Menzies, J. W. et al. Spectroscopic and photometric observations of SN 1987a: the first 50 days. Mon. Not. R. Astron. Soc 227, 39P–49P (1987).


    Google Scholar
     

  • Hosseinzaden, G. et al. Weak mass loss from the red supergiant progenitor of the type II SN 2021yja. Preprint at https://arxiv.org/abs/2203.08155 (2022).

  • Bullivant, C. et al. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in type II supernovae. Mon. Not. R. Astron. Soc 476, 1497–1518 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Valenti, S. et al. The diversity of type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc 459, 3939–3962 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. SN 2020bvc: a broad-line type Ic supernova with a double-peaked optical light curve and a luminous X-ray and radio counterpart. Astrophys. J. 902, 86 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. The young and nearby normal type Ia supernova 2018gv: UV–optical observations and the earliest spectropolarimetry. Astrophys. J. 902, 46 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. The Koala: a fast blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Richardson, D., Jenkins, R. L. III, Wright, J. & Maddox, L. Absolute-magnitude distributions of supernovae. Astrophys. J. 147, 118 (2014).


    Google Scholar
     

  • Taylor, M. et al. The core collapse supernova rate from the SDSS-II supernova survey. Astrophys. J. 792, 135 (2014).

    ADS 

    Google Scholar
     

  • Hatano, K., Branch, D. & Deaton, J. Extinction and radial distribution of supernova properties in their parent galaxies. Astrophys. J. 502, 177–181 (1998).


    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS 

    Google Scholar
     

  • Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. A 186, 453–461 (1946).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Kelly, P. L. & Refsdal, S. N. et al. Classification as a luminous and blue SN 1987A-like type II supernova. Astrophys. J. 831, 205 (2016).

    ADS 

    Google Scholar
     

  • Pastorello, A. et al. SN 2009E: a faint clone of SN 1987A. Astron. Astrophys. 537, A141 (2012).


    Google Scholar
     

  • Taddia, F. et al. Long-rising type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. Astron. Astrophys. 588, A5 (2016).


    Google Scholar
     

  • Coe, D., Benítez, N., Broadhurst, T. & Moustakas, L. A. A high-resolution mass map of galaxy cluster substructure: LensPerfect analysis of A1689. Astrophys. J. 723, 1678 (2010).

    ADS 

    Google Scholar
     

  • Source link