May 7, 2024

Signatures of Wigner crystal of electrons in a monolayer semiconductor

  • 1.

    Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 2.

    Lozovik, Y. E. & Yudson, V. I. Crystallization of a two-dimensional electron gas in a magnetic field. J. Exp. Theor. Phys. Lett. 22, 11–12 (1975).


    Google Scholar
     

  • 3.

    Grimes, C. C. & Adams, G. Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys. Rev. Lett. 42, 795–798 (1979).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Andrei, E. Y. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimentional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Williams, F. I. B. et al. Conduction threshold and pinning frequency of magnetically induced Wigner solid. Phys. Rev. Lett. 66, 3285–3288 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Buhmann, H. et al. Novel magneto-optical behavior in the Wigner-solid regime. Phys. Rev. Lett. 66, 926–929 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Goldys, E. M. et al. Magneto-optical probe of two-dimensional electron liquid and solid phases. Phys. Rev. B 46, 7957–7960 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Ye, P. D. et al. Correlation lengths of the Wigner-crystal order in a two-dimensional electron system at high magnetic fields. Phys. Rev. Lett. 89, 176802 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Chen, Y. P. et al. Melting of a 2D quantum electron solid in high magnetic field. Nat. Phys. 2, 452–455 (2006).

    CAS 

    Google Scholar
     

  • 11.

    Tiemann, L., Rhone, T. D., Shibata, N. & Muraki, K. NMR profiling of quantum electron solids in high magnetic fields. Nat. Phys. 10, 648–652 (2014).

    CAS 

    Google Scholar
     

  • 12.

    Deng, H. et al. Commensurability oscillations of composite fermions induced by the periodic potential of a Wigner crystal. Phys. Rev. Lett. 117, 096601 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Shimazaki, Y. et al. Optical signatures of periodic charge distribution in a Mott-like correlated insulator state. Phys. Rev. X 11, 021027 (2021).


    Google Scholar
     

  • 14.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS 

    Google Scholar
     

  • 15.

    Drummond, N. D. & Needs, R. J. Phase diagram of the low-density two-dimensional homogeneous electron gas. Phys. Rev. Lett. 102, 126402 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Yoon, J., Li, C. C., Shahar, D., Tsui, D. C. & Shayegan, M. Wigner crystallization and metal–insulator transition of two-dimensional holes in GaAs at B = 0. Phys. Rev. Lett. 82, 1744–1747 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Shapir, I. et al. Imaging the electronic Wigner crystal in one dimension. Science 364, 870–875 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Hossain, M. S. et al. Observation of spontaneous ferromagnetism in a two-dimensional electron system. Proc. Natl Acad. Sci. USA 117, 32244–32250 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Zarenia, M., Neilson, D., Partoens, B. & Peeters, F. M. Wigner crystallization in transition metal dichalcogenides: a new approach to correlation energy. Phys. Rev. B 95, 115438 (2017).

    ADS 

    Google Scholar
     

  • 20.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Padhi, B., Chitra, R. & Phillips, P. W. Generalized Wigner crystallization in moiré materials. Phys. Rev. B 103, 125146 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Smoleński, T. et al. Interaction-induced Shubnikov–de Haas oscillations in optical conductivity of monolayer MoSe2. Phys. Rev. Lett. 123, 097403 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    CAS 

    Google Scholar
     

  • 28.

    Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017).

    ADS 

    Google Scholar
     

  • 29.

    Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotech. 9, 111–115 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Larentis, S. et al. Large effective mass and interaction-enhanced Zeeman splitting of K-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Li, Y. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 113, 266804 (2014).

    ADS 

    Google Scholar
     

  • 32.

    Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302 (2014).

    ADS 

    Google Scholar
     

  • 33.

    Spivak, B., Kravchenko, S. V., Kivelson, S. A. & Gao, X. P. A. Transport in strongly correlated two dimensional electron fluids. Rev. Mod. Phys. 82, 1743–1766 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Tešanović, Z., Axel, F. & Halperin, B. I. “Hall crystal” versus Wigner crystal. Phys. Rev. B 39, 8525–8551 (1989).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 35.

    Ruzin, I. M., Marianer, S. & Shklovskii, B. I. Pinning of a two-dimensional Wigner crystal by charged impurities. Phys. Rev. B 46, 3999–4008 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Zhu, X., Littlewood, P. B. & Millis, A. J. Sliding motion of a two-dimensional Wigner crystal in a strong magnetic field. Phys. Rev. B 50, 4600–4621 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Fogler, M. M. & Huse, D. A. Dynamical response of a pinned two-dimensional Wigner crystal. Phys. Rev. B 62, 7553–7570 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Chitra, R. & Giamarchi, T. Zero field Wigner crystal. Eur. Phys. J. B 44, 455–467 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499–502 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Bernu, B., Cândido, L. & Ceperley, D. M. Exchange frequencies in the 2D Wigner crystal. Phys. Rev. Lett. 86, 870–873 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    ADS 

    Google Scholar
     

  • 42.

    Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

    ADS 

    Google Scholar
     

  • 43.

    Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Lee, S.-Y., Jeong, T.-Y., Jung, S. & Yee, K.-J. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B 256, 1800417 (2019).

    ADS 

    Google Scholar
     

  • 45.

    Rah, Y., Jin, Y., Kim, S. & Yu, K. Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared. Opt. Lett. 44, 3797–3800 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

    CAS 

    Google Scholar
     

  • 47.

    Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

    CAS 

    Google Scholar
     

  • 48.

    Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018); correction 4, 28 (2020).


    Google Scholar
     

  • 50.

    Monarkha, Y. P. & Syvokon, V. E. A two-dimensional Wigner crystal. Low Temp. Phys. 38, 1067–1095 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Bruun, G. M. & Nelson, D. R. Quantum hexatic order in two-dimensional dipolar and charged fluids. Phys. Rev. B 89, 094112 (2014).

    ADS 

    Google Scholar
     

  • 52.

    Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Qiu, D. Y., Cao, T. & Louie, S. G. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: theory and first-principles calculations. Phys. Rev. Lett. 115, 176801 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Efimkin, D. K. & MacDonald, A. H. Exciton-polarons in doped semiconductors in a strong magnetic field. Phys. Rev. B 97, 235432 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 4172 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link