May 27, 2024
Silent mutations reveal therapeutic vulnerability in RAS Q61 cancers – Nature

Silent mutations reveal therapeutic vulnerability in RAS Q61 cancers – Nature

  • Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Middleton, G. et al. The National Lung Matrix Trial of personalized therapy in lung cancer. Nature 583, 807–812 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Diederichs, S. et al. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol. Med. 8, 442–457 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Group, P. T. C. et al. Genomic basis for RNA alterations in cancer. Nature 578, 129–136 (2020).

    ADS 

    Google Scholar
     

  • Consortium, A. P. G. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).


    Google Scholar
     

  • Janne, P. A. et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 randomized clinical trial. JAMA 317, 1844–1853 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitai, H. et al. Epithelial-to-mesenchymal transition defines feedback activation of receptor tyrosine kinase signaling induced by MEK inhibition in KRAS-mutant lung cancer. Cancer Discov. 6, 754–769 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruspig, B. et al. The ERBB network facilitates KRAS-driven lung tumorigenesis. Sci. Transl. Med. 10, eaao2565 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moll, H. P. et al. Afatinib restrains K-RAS-driven lung tumorigenesis. Sci. Transl. Med. 10, eaao2301 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaMarche, M. J. et al. Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J. Med. Chem. 63, 13578–13594 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hong, D. S. et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, J. C. et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res. 13, 1325–1335 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. W. et al. KRASQ61H preferentially signals through MAPK in a RAF dimer-dependent manner in non-small cell lung cancer. Cancer Res. 80, 3719–3731 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Oxnard, G. R. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4, 1527–1534 (2018).

    PubMed 

    Google Scholar
     

  • Ramalingam, S. S. et al. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann. Oncol 29, VIII740 (2018).


    Google Scholar
     

  • Reinert, T. et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 5, 1124–1131 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chabon, J. J. et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 580, 245–251 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amendola, C. R. et al. KRAS4A directly regulates hexokinase 1. Nature 576, 482–486 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Desmet, F. O. et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37, e67 (2009).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McVety, S., Li, L., Gordon, P. H., Chong, G. & Foulkes, W. D. Disruption of an exon splicing enhancer in exon 3 of MLH1 is the cause of HNPCC in a Quebec family. J. Med. Genet. 43, 153–156 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janes, M. R. et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589.e517 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Brant, R. et al. Clinically viable gene expression assays with potential for predicting benefit from MEK inhibitors. Clin. Cancer Res. 23, 1471–1480 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Chang, M. T. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 155–163 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zammarchi, F. et al. Antitumorigenic potential of STAT3 alternative splicing modulation. Proc. Natl Acad. Sci. USA 108, 17779–17784 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ross, S. J. et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl. Med. 9, eaal5253 (2017).

    PubMed 

    Google Scholar
     

  • Amodio, V. et al. EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer. Cancer Discov. 10, 1129–1139 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, A. F. et al. Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J. Clin. Invest. 129, 4739–4744 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boisguerin, P. et al. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv. Drug Deliv. Rev. 87, 52–67 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imbert, M., Dias-Florencio, G. & Goyenvalle, A. Viral vector-mediated antisense therapy for genetic diseases. Genes 8, 51 (2017).

    PubMed Central 

    Google Scholar
     

  • Sharma, Y. et al. A pan-cancer analysis of synonymous mutations. Nat. Commun. 10, 2569 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q. & Krainer, A. R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, P. J. et al. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 15, 2490–2508 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Fairbrother, W. G. et al. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res. 32, W187–W190 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. H. & Chasin, L. A. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev. 18, 1241–1250 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hori, S.-i et al. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides. Nucleic Acids Res. 43, e128 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, E. P. et al. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch. Pathol. Lab. Med. 141, 751–758 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Odegaard, J. I. et al. Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin. Cancer Res. 24, 3539–3549 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link