May 4, 2024
Single-electron spin resonance detection by microwave photon counting – Nature

Single-electron spin resonance detection by microwave photon counting – Nature

  • Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

  • Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wrachtrup, J., Von Borczyskowski, C., Bernard, J., Orritt, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rugar, D., Budakian, R., Mamin, H. & Chui, B. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Grinolds, M. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shi, F. et al. Single-DNA electron spin resonance spectroscopy in aqueous solutions. Nat. Methods 15, 697–699 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albertinale, E. et al. Detecting spins by their fluorescence with a microwave photon counter. Nature 600, 434–438 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lescanne, R. et al. Irreversible qubit-photon coupling for the detection of itinerant microwave photons. Phys. Rev. X 10, 021038 (2020).

    CAS 

    Google Scholar
     

  • Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kubo, Y. et al. Electron spin resonance detected by a superconducting qubit. Phys. Rev. B 86, 064514 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bienfait, A. et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotechnol. 11, 253–257 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Haikka, P., Kubo, Y., Bienfait, A., Bertet, P. & Moelmer, K. Proposal for detecting a single electron spin in a microwave resonator. Phys. Rev. A 95, 022306 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Eichler, C., Sigillito, A., Lyon, S. & Petta, J. Electron spin resonance at the level of 10^4 spins using low impedance superconducting resonators. Phys. Rev. Lett. 118, 037701 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Budoyo, R. P. et al. Electron paramagnetic resonance spectroscopy of Er3+:YSO using a Josephson bifurcation amplifier: observation of hyperfine and quadrupole structures. Phys. Rev. Mater. 2, 011403 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Budoyo, R. P., Kakuyanagi, K., Toida, H., Matsuzaki, Y. & Saito, S. Electron spin resonance with up to 20 spin sensitivity measured using a superconducting flux qubit. Appl. Phys. Lett. 116, 194001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ranjan, V. et al. Electron spin resonance spectroscopy with femtoliter detection volume. Appl. Phys. Lett. 116, 184002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Antipin, A., Katyshev, A., Kurkin, I. & Shekun, L. Paramagnetic resonance and spin-lattice relaxation of Er3+ and Tb3+ ions in CaWO4 crystal lattice. Sov. Phys. Solid State 10, 468 (1968).


    Google Scholar
     

  • Mims, W. B. & Gillen, R. Broadening of paramagnetic-resonance lines by internal electric fields. Phys. Rev. 148, 438–443 (1966).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Dibos, A., Raha, M., Phenicie, C. & Thompson, J. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pla, J. et al. Strain-induced spin-resonance shifts in silicon devices. Phys. Rev. Appl. 9, 044014 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ranjan, V. et al. Spatially resolved decoherence of donor spins in silicon strained by a metallic electrode. Phys. Rev. X 11, 031036 (2021).

    CAS 

    Google Scholar
     

  • Broadway, D. A. et al. Microscopic imaging of the stress tensor in diamond using in situ quantum sensors. Nano Lett. 19, 4543–4550 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Billaud, E. et al. Microwave fluorescence detection of spin echoes. Preprint at https://arxiv.org/abs/2208.13586 (2022).

  • Le Dantec, M. et al. Twenty-three-millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Myers, B. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Castle, J. G. & Feldman, D. W. Resonance modes at defects in crystalline quartz. Phys. Rev. 137, A671–A673 (1965).

    Article 
    ADS 

    Google Scholar
     

  • Gayda, J.-P. et al. Temperature dependence of the electronic spin-lattice relaxation time in a 2-iron-2-sulfur protein. Biochim. Biophys. Acta – Protein Structure 581, 15–26 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y., Bowler, B. E., Eaton, G. R. & Eaton, S. S. Electron spin lattice relaxation rates for S = 12 molecular species in glassy matrices or magnetically dilute solids at temperatures between 10 and 300 K. J. Magn. Res. 139, 165–174 (1999).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Casabone, B. et al. Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles. Nat. Commun. 12, 3570 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Coremans, J. W. A. et al. A W-band electron paramagnetic resonance study of a single crystal of azurin. J. Am. Chem. Soc. 116, 3097–3101 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Doorslaer, S. V. & Vinck, E. The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins. Phys. Chem. Chem. Phys. 9, 4620–4638 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Le Dantec, M. Electron Spin Dynamics of Erbium Ions in Scheelite Crystals, Probed with Superconducting Resonators at Millikelvin Temperatures. PhD thesis, Univ. Paris-Saclay (2022); https://tel.archives-ouvertes.fr/tel-03579857.

  • Gambetta, J. et al. Qubit-photon interactions in a cavity: measurement-induced dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Larson, G. H. & Jeffries, C. D. Spin-lattice relaxation in some rare-earth salts. I. Temperature dependence. Phys. Rev. 141, 461–478 (1966).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Source link