May 6, 2024

Single-year radiocarbon dating anchors Viking Age trade cycles in time – Nature

  • 1.

    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 62, 725–757 (2020).

    CAS 

    Google Scholar
     

  • 2.

    Büntgen, U. et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 9, 3605 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Dee, M. et al. Supernovae and single-year anomalies in the atmospheric radiocarbon record. Radiocarbon 59, 293–302 (2016).


    Google Scholar
     

  • 4.

    Fogtmann-Schulz, A. Cosmic ray event in 994 C.E. recorded in radiocarbon from Danish oak. Geophys. Res. Lett. 44, 8621–8628 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Jull, A. J. T. et al. More rapid 14C excursions in the tree-ring record: a record of different kind of solar activity at about 800 BC? Radiocarbon 60, 1237–1248 (2018).

    CAS 

    Google Scholar
     

  • 6.

    Wang, F. Y. et al. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nat. Commun. 8, 1487 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Mekhaldi, F. et al. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat. Commun. 6, 8611 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Park, J. et al. Relationship between solar activity and 14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59, 1147–1156 (2017).

    CAS 

    Google Scholar
     

  • 9.

    Miyake, F. et al. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proc. Natl Acad. Sci. USA 114, 881–884 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Dee, M. W. & Pope, B. J. S. Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. R. Soc. A 472, 20160263 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56, 573–579 (2014).

    CAS 

    Google Scholar
     

  • 12.

    Kuitems, M. et al. Radiocarbon-based approach capable of subannual precision resolves the origins of the site of Por-Bajin. Proc. Natl Acad. Sci. USA 117, 14038–14041 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Miyake, F. et al. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240–242 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • 15.

    Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Misra, P., Tandon, S. K. & Sinha, R. Holocene climate records from lake sediments in India: assessment of coherence across climate zones. Earth Sci. Rev. 190, 370–397 (2019).

    ADS 

    Google Scholar
     

  • 17.

    Denniston, R. F. & Luetscher, M. Speleothems as high-resolution paleoflood archives. Quat. Sci. Rev. 170, 1–13 (2017).

    ADS 

    Google Scholar
     

  • 18.

    Dahl-Jensen, D. et al. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

  • 20.

    Hansen, V. The Year 1000. When Explorers Connected the World – And Globalization Began (Scribner, 2020).

  • 21.

    Hodges, R. & Whitehouse, D. Mohammed, Charlemagne and the Origins of Europe. The Pirenne Thesis in the Light of Archaeology (Duckworth, 1983).

  • 22.

    Noonan, T. S. The Islamic World, Russia and the Vikings, 750–900. The Numismatic Evidence (Routledge, 1998).

  • 23.

    McCormick, M. Origins of the European Economy: Communications and Commerce AD 300–900 (Cambridge Univ. Press, 2001).

  • 24.

    Jankowiak, M. in Viking-Age Trade: Silver, Slaves and Gotland (eds Gruszczyński, J. et al.) (Routledge, 2020).

  • 25.

    Barrett, J. H. What caused the Viking Age? Antiquity 82, 671–685 (2008).


    Google Scholar
     

  • 26.

    Hodges, R. Dark Age Economics: A New Audit (Bloomsbury Academic, 2012).

  • 27.

    Wickham, C. Framing the Early Middle Ages: Europe and the Mediterranean, 400–800 (Oxford Univ. Press, 2005).

  • 28.

    Baug, I. et al. The beginning of the Viking Age in the West. J. Marit. Archaeol. 14, 43–80 (2019).

    ADS 

    Google Scholar
     

  • 29.

    Schrijver, C. J. et al. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res. Space Phys. 117 (2012).

  • 30.

    Baroni, M. et al. Volcanic and solar activity, and atmospheric circulation influences on cosmogenic 10Be fallout at Vostok and Concordia (Antarctica) over the last 60 years. Geochim. Cosmochim. Acta 75, 7132–7145 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Stuiver, M. & Braziunas, T. F. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3, 289–305 (1993).

    ADS 

    Google Scholar
     

  • 32.

    Kuitems, M. et al. Evidence for European presence in the Americas in AD 1021. Nature https://doi.org/10.1038/s41586-021-03972-8 (2021).

  • 33.

    Croix, S. et al. Single context, metacontext, and high definition archaeology: Integrating new standards of stratigraphic excavation and recording. J. Archaeol. Method Theory 26, 1591–1631 (2019).


    Google Scholar
     

  • 34.

    Yang, J. & Ren, P. BFDA: a MATLAB toolbox for Bayesian functional data analysis. J. Stat. Softw. 89, 21 (2019).


    Google Scholar
     

  • 35.

    Buck, C. E. et al. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65, 808–821 (1991).


    Google Scholar
     

  • 36.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).


    Google Scholar
     

  • 37.

    Callmer, J. in Glass beads – Cultural History, Technology, Experiment and Analogy. Proceedings of the Nordic Glass Bead Seminar 16th–18th October 1992 Studies in Technology and Culture 2. Lejre (eds Rasmussen, M. et al.) 49–54 (1995).

  • 38.

    Sindbæk, S. M. in Urban Network Evolutions: Towards a high-definition archaeology (eds Raja, R. and Sindbæk, S.) 161–166 (Aarhus Univ. Press, 2018).

  • 39.

    Ashby, S., Coutu, A. & Sindbæk, S. Urban networks and arctic outlands: craft specialists and reindeer antler in Viking towns. Eur. J. Archaeol. 18, 679–704 (2015).


    Google Scholar
     

  • 40.

    Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (2016).


    Google Scholar
     

  • 41.

    Kerr, T. R., Swindles, G. T. & Plunkett, G. Making hay while the sun shines? Socio-economic change, cereal production and climatic deterioration in Early Medieval Ireland. J. Archaeolog. Sci. 36, 2868–2874 (2009).


    Google Scholar
     

  • 42.

    Sukhodolov, T. et al. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Sci. Rep. 7, 45257 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 

    Google Scholar
     

  • 44.

    Hall, R. Exploring the World of the Vikings (Thames and Hudson, 2007).

  • 45.

    Croix, S. et al. Single context, metacontext, and high definition archaeology: integrating new standards of stratigraphic excavation and recording. J. Archaeol. Method Theory 26, 1591–1631 (2019).


    Google Scholar
     

  • 46.

    Tyers, I. DENDRO for Windows Program Guide ARCUS Report Vol. 500 (Univ. of Sheffield, 1999).

  • 47.

    Baillie, M. & Pilcher, J. A simple cross-dating program for tree-ring research. Tree-Ring Bull. 33, 7–14 (1973).


    Google Scholar
     

  • 48.

    Kudsk, S. G. K., et al. What is the carbon origin of early-wood? Radiocarbon 60, 1457–1464 (2018).

    CAS 

    Google Scholar
     

  • 49.

    McDonald, L., D. Chivall, Miles, D. & Bronk Ramsey, C. Seasonal variations in the 14C content of tree rings: influences on radiocarbon calibration and single-year curve construction. Radiocarbon 61, 185–194 (2018).


    Google Scholar
     

  • 50.

    Loer, N. J., Robertson, I., Barker, A. C., Switsur, V. R. & Waterhouse, J. S. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem. Geol. 136, 313–317 (1997).

    ADS 

    Google Scholar
     

  • 51.

    Southon, J. R. & Magana, A. L., A comparison of cellulose extraction and ABA pretreatment methods for AMS C-14 dating of ancient wood. Radiocarbon 52, 1371–1379 (2010).

    CAS 

    Google Scholar
     

  • 52.

    Kudsk, S. G. K. et al. New single-year radiocarbon measurements based on Danish oak covering the periods AD 692–790 and 966–1057. Radiocarbon 62, 969–987 (2019).


    Google Scholar
     

  • 53.

    Vogel, J. S., Southon, J. R., Nelson, D. E. & Brown, T. A., Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res. B 5, 289–293 (1984).

    ADS 

    Google Scholar
     

  • 54.

    Olsen, J., Tikhomirov, D., Grosen, C., Heinemeier, J. & Klein, M., Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59, 905–913 (2016).


    Google Scholar
     

  • 55.

    Stuiver, M. & Polach, H. A. Discussion. Reporting of 14C data. Radiocarbon 19, 355–363 (1977).


    Google Scholar
     

  • 56.

    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Brown, T. A., Nelson, D. E., Vogel, J. C. & Southon, J. R. Improved collagen extraction by improved Longin method. Radiocarbon 30, 171–177 (1988).

    CAS 

    Google Scholar
     

  • 58.

    Jørkov, M. L. S., Heinemeier, J. & Lynnerup, N. Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. J. Archaeolog. Sci. 34, 1824–1829 (2007).


    Google Scholar
     

  • Source link