April 26, 2024
Spatial genomics maps the structure, nature and evolution of cancer clones – Nature

Spatial genomics maps the structure, nature and evolution of cancer clones – Nature

  • Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaglia, G. et al. Temporal and spatial topography of cell proliferation in cancer. Nat. Cell Biol. 24, 316–326 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Janiszewska, M. et al. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat. Cell Biol. 21, 879–888 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205–217.e12 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarabichi, M. et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nat. Methods 18, 144–155 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, C. Y. et al. Genome-wide search for loss of heterozygosity using laser capture microdissected tissue of breast carcinoma: an implication for mutator phenotype and breast cancer pathogenesis. Cancer Res. 60, 3884–3892 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janiszewska, M. et al. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat. Genet. 47, 1212–1219 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsson, C., Grundberg, I., Söderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Grundberg, I. et al. In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics. Oncotarget 4, 2407–2418 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Baker, A.-M. et al. Robust RNA-based in situ mutation detection delineates colorectal cancer subclonal evolution. Nat. Commun. 8, 1998 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cowell, C. F. et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol. Oncol. 7, 859–869 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svedlund, J. et al. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine 48, 212–223 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gataric, M. et al. PoSTcode: probabilistic image-based spatial transcriptomics decoder. Preprint at https://doi.org/10.1101/2021.10.12.464086 (2021).

  • Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kole, A. J. et al. Overall survival is improved when DCIS accompanies invasive breast cancer. Sci. Rep. 9, 9934 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Going, J. J. & Moffat, D. F. Escaping from flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. J. Pathol. 203, 538–544 (2004).

    PubMed 

    Google Scholar
     

  • Schnitt, S. J. & Collins, L. C. Biopsy Interpretation of the Breast (Lippincott Williams & Wilkins, 2009).

  • Pinder, S. E. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod. Pathol. 23, S8–S13 (2010).

    PubMed 

    Google Scholar
     

  • Thomson, J. Z. et al. Growth pattern of ductal carcinoma in situ (DCIS): a retrospective analysis based on mammographic findings. Br. J. Cancer 85, 225–227 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solin, L. J. et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J. Natl Cancer Inst. 105, 701–710 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jatoi, I., Hilsenbeck, S. G., Clark, G. M. & Osborne, C. K. Significance of axillary lymph node metastasis in primary breast cancer. J. Clin. Oncol. 17, 2334–2340 (1999)

  • Sereesongsaeng, N., McDowell, S. H., Burrows, J. F., Scott, C. J. & Burden, R. E. Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Res. 22, 139 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, M. J. et al. CD24 overexpression is associated with poor prognosis in luminal A and triple-negative breast cancer. PLoS ONE 10, e0139112 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X.-P. et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget 6, 22880–22889 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cairns, R. A. & Hill, R. P. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res. 64, 2054–2061 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H., Marco Salas, S., Gyllborg, D. & Nilsson, M. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. Sci. Rep. 12, 7976 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35, 125–129 (1973).


    Google Scholar
     

  • Source link