May 28, 2024
Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy – Nature

Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy – Nature

  • Dole, H. et al. The cosmic infrared background resolved by Spitzer: contributions of mid-infrared galaxies to the far-infrared background. Astron. Astrophys. 451, 417–429 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Devlin, M. J. et al. Over half of the far-infrared background light comes from galaxies at z>=1.2. Nature 458, 737–739 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zavala, J. A. et al. The evolution of the IR luminosity function and dust-obscured star formation over the past 13 billion years. Astrophys. J. 909, 165 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kwok, S. & Zhang, Y. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479, 80–83 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rigopoulou, D. et al. The properties of polycyclic aromatic hydrocarbons in galaxies: constraints on PAH sizes, charge and radiation fields. Mon. Not. R. Astron. Soc. 504, 5287–5300 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, A. Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. Nat. Astron. 4, 339–351 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Riechers, D. A. et al. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy. Astrophys. J. 786, 31 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Carlstrom, J. E. et al. The 10 Meter South Pole Telescope. Publ. Astron. Soc. Pac. 123, 568 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Everett, W. B. et al. Millimeter-wave point sources from the 2500 Square Degree SPT-SZ Survey: catalog and population statistics. Astrophys. J. 900, 55 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weiß, A. et al. ALMA redshifts of millimeter-selected galaxies from the SPT Survey: the redshift distribution of dusty star-forming galaxies. Astrophys. J. 767, 88 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Spilker, J. S. et al. ALMA imaging and gravitational lens models of South Pole Telescope—selected dusty, star-forming galaxies at high redshifts. Astrophys. J. 826, 112 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Spilker, J. S. et al. Ubiquitous molecular outflows in z > 4 massive, dusty galaxies. I. Sample overview and clumpy structure in molecular outflows on 500 pc scales. Astrophys. J. 905, 85 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rizzo, F. et al. A dynamically cold disk galaxy in the early Universe. Nature 584, 201–204 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, B. et al. Discovery of a dusty, chemically mature companion to a z~4 starburst galaxy in JWST ERS data. Astrophys. J. 944, L36 (2023).

    Article 
    ADS 

    Google Scholar
     

  • De Breuck, C. et al. A dense, solar metallicity ISM in the z=4.2 dusty star-forming galaxy SPT0418-47. Astron. Astrophys. 631, A167 (2019).

    Article 

    Google Scholar
     

  • Spilker, J. S. et al. Ubiquitous molecular outflows in z > 4 massive, dusty galaxies. II. Momentum-driven winds powered by star formation in the early Universe. Astrophys. J. 905, 86 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Draine, B. T. et al. Excitation of polycyclic aromatic hydrocarbon emission: dependence on size distribution, ionization, and starlight spectrum and intensity. Astrophys. J. 917, 3 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schutte, W. A., Tielens, A. G. G. M. & Allamandola, L. J. Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons. Astrophys. J. 415, 397 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Joblin, C., Tielens, A. G. G. M., Allamandola, L. J. & Geballe, T. R. Spatial variation of the 3.29 and 3.40 micron emission bands within reflection nebulae and the photochemical evolution of methylated polycyclic aromatic hydrocarbons. Astrophys. J. 458, 610 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, J. R., Allamandola, L. J. & Tielens, A. G. G. M. Anharmonicity and the interstellar polycyclic aromatic hydrocarbon infrared emission spectrum. Astrophys. J. 315, L61 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maltseva, E. et al. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of hydrogenation and alkylation. Astron. Astrophys. 610, A65 (2018).

    Article 

    Google Scholar
     

  • Imanishi, M., Nakagawa, T., Shirahata, M., Ohyama, Y. & Onaka, T. AKARI IRC infrared 2.5-5 μm spectroscopy of a large sample of luminous infrared galaxies. Astrophys. J. 721, 1233–1261 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rich, J. et al. GOALS-JWST: pulling back the curtain on the AGN and star formation in VV 114. Astrophys. J. 944, L50 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yamada, R. et al. A relation of the PAH 3.3 μm feature with star-forming activity for galaxies with a wide range of infrared luminosity. Publ. Astron. Soc. Jap. 65, 103 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Inami, H. et al. The AKARI 2.5-5 micron spectra of luminous infrared galaxies in the local Universe. Astron. Astrophys. 617, A130 (2018).

    Article 

    Google Scholar
     

  • Sajina, A. et al. Detections of water ice, hydrocarbons, and 3.3 μm PAH in z~2 ULIRGs. Astrophys. J. 703, 270–284 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siana, B. et al. Detection of far-infrared and polycyclic aromatic hydrocarbon emission from the cosmic eye: probing the dust and star formation of Lyman break galaxies. Astrophys. J. 698, 1273–1281 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, J. D. T. et al. The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 656, 770–791 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lai, T. S. Y., Smith, J. D. T., Baba, S., Spoon, H. W. W. & Imanishi, M. All the PAHs: an AKARI-Spitzer cross-archival spectroscopic survey of aromatic emission in galaxiies. Astrophys. J. 905, 55 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: III. Integral-field spectroscopy. Astron. Astrophys. 661, A82 (2022).

    Article 

    Google Scholar
     

  • Rieke, G. H. et al. The Mid-infrared instrument for the James Webb Space Telescope, I: introduction. Publ. Astron. Soc. Pac. 127, 584 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wells, M. et al. The mid-infrared instrument for the James Webb Space Telescope, VI: the Medium Resolution Spectrometer. Publ. Astron. Soc. Pac. 127, 646 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI Medium Resolution Spectrometer. Astron. Astrophys. 656, A57 (2021).

    Article 
    CAS 

    Google Scholar
     

  • JWST-Templates. GitHub https://github.com/jwst-templates.

  • Reuter, C. et al. The complete redshift distribution of dusty star-forming galaxies from the SPT-SZ Survey. Astrophys. J. 902, 78 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link