May 30, 2024

Spatiotemporal origin of soil water taken up by vegetation – Nature

  • 1.

    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 2.

    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 3.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 4.

    Schlesinger, W. H. & Jasechko, S. Agricultural and forest meteorology transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).

    Article 
    ADS 

    Google Scholar
     

  • 5.

    Dawson, T. E. & Pate, J. S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107, 13–20 (1996).

    Article 
    ADS 

    Google Scholar
     

  • 6.

    Voltas, J., Devon, L., Maria Regina, C. & Juan Pedro, F. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis. New Phytol. 208, 1031–1041 (2015).

    Article 

    Google Scholar
     

  • 7.

    Grossiord, C. et al. Prolonged warming and drought modify belowground interactions for water among coexisting plants. Tree Physiol. 39, 55–63 (2018).

    Article 

    Google Scholar
     

  • 8.

    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 9.

    Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jiménez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).

    Article 
    ADS 

    Google Scholar
     

  • 10.

    Evaristo, J. & McDonnell, J. J. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Sci Rep. 7, 44110 (2017).

    Article 
    ADS 

    Google Scholar
     

  • 11.

    Barbeta, A. & Peñuelas, J. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Sci Rep. 7, 10580 (2017).

    Article 
    ADS 

    Google Scholar
     

  • 12.

    Jobbágy, E. G., Nosetto, M. D., Villagra, P. E. & Jackson, R. B. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 21, 678–694 (2011).

    Article 

    Google Scholar
     

  • 13.

    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 14.

    Ellsworth, P. Z. & Sternberg, L. S. L. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 551, 538–551 (2015).

    Article 

    Google Scholar
     

  • 15.

    Sohel, S. Spatial and Temporal Variation of Sources of Water Across Multiple Tropical Rainforest Trees. PhD thesis, Univ. Queensland (2019).

  • 16.

    Williams, D. G. & Ehleringer, J. R. Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol. Monogr. 70, 517–537 (2000).


    Google Scholar
     

  • 17.

    Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R., T. W. & Goldsmith, G. R. Seasonal origins of soil water used by trees. Hydrol. Earth Syst. Sci. 23, 1199–1210 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 18.

    David, T. S. et al. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 27, 793–803 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Zencich, S. J., Froend, R. H., Turner, J. V. & Gailitis, V. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131, 8–19 (2002).

    Article 
    ADS 

    Google Scholar
     

  • 20.

    Naumburg, E., Mata-Gonzalez, R., Hunter, R. G. & Martin, D. W. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation. Environ. Manage. 35, 726–740 (2005).

    Article 

    Google Scholar
     

  • 21.

    Snyder, K. A. & Williams, D. G. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric. For. Meteorol. 105, 227–240 (2000).

    Article 
    ADS 

    Google Scholar
     

  • 22.

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263 (2006).

    Article 
    ADS 

    Google Scholar
     

  • 23.

    Eleringer J. R. & Dawson T. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 1073–1082 (1992).

  • 24.

    Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H. & Tu, K. P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507–559 (2002).

    Article 

    Google Scholar
     

  • 25.

    Rothfuss, Y. & Javaux, M. Reviews and syntheses: isotopic approaches to quantify root water uptake: a review and comparison of methods. Biogeosciences 14, 2199–2224 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 26.

    Orlowski, N. et al. Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrol. Earth Syst. Sci. 22, 3619–3637 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 27.

    Chen, Y. et al. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proc. Natl Acad. Sci. USA 117, 33345–33350 (2021).

    Article 
    ADS 

    Google Scholar
     

  • 28.

    Pastorello, G., Trotta, C., Canfora, E. & Al., E. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article 

    Google Scholar
     

  • 29.

    Zhao, Y. & Wang, L. Plant water use strategy in response to spatial and temporal variation in precipitation patterns in China: a stable isotope analysis. Forests 9, 1–21 (2018).


    Google Scholar
     

  • 30.

    Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. Atmos. 117, (2012).

  • 31.

    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 32.

    Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Source link