May 24, 2024

Spectroscopic evidence for a gold-coloured metallic water solution – Nature

  • 1.

    Hermann, A., Ashcroft, N. W. & Hoffmann, R. High pressure ices. Proc. Natl Acad. Sci. USA 109, 745–750 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Mattsson, T. R. & Desjarlais, M. P. Phase diagram and electrical conductivity of high energy-density water from density functional theory. Phys. Rev. Lett. 97, 017801 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Zurek, E., Edwards, P. P. & Hoffmann, R. A molecular perspective on lithium-ammonia solutions. Angew. Chem. Int. Ed. 48, 8198–8232 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Thompson, J. C. Electrons in Liquid Ammonia (Clarendon Press, 1976).

  • 8.

    Lodge, M. et al. Multielement NMR studies of the liquid-liquid phase separation and the metal-to-nonmetal transition in fluid lithium- and sodium-ammonia solutions. J. Phys. Chem. B 117, 13322–13334 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Buttersack, T. et al. Photoelectron spectra of alkali metal-ammonia microjets: from blue electrolyte to bronze metal. Science 368, 1086–1091 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Hutton, A. T. Dramatic demonstration for a large audience: the formation of hydroxyl ions in the reaction of sodium with water. J. Chem. Educ. 58, 506 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Mason, P. E. et al. Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 7, 250–254 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Young, R. M. & Neumark, D. M. Dynamics of solvated electrons in clusters. Chem. Rev. 112, 5553–5577 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Mason, P. E., Buttersack, T., Bauerecker, S. & Jungwirth, P. A non-exploding alkali metal drop on water: from blue solvated electrons to bursting molten hydroxide. Angew. Chem. Int. Ed. 55, 13019–13022 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Suzuki, T. Ultrafast photoelectron spectroscopy of aqueous solutions. J. Chem. Phys. 151, 090901 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Alchagirov, B. B. et al. Surface tension and adsorption of components in the sodium–potassium alloy systems: effective liquid metal coolants promising in nuclear and space power engineering. Inorg. Mater. Appl. Res. 2, 461–467 (2011).

    Article 

    Google Scholar
     

  • 16.

    Addison, C. C. The Chemistry of Liquid Alkali Metals (Wiley, 1984).

  • 17.

    Citrin, P. H. High-resolution X-ray photoemission from sodium metal and its hydroxide. Phys. Rev. B 8, 5545–5556 (1973).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Lueth, H. Surfaces and Interfaces of Solid Materials (Springer, 1997).

  • 19.

    Kiskinova, M., Pirug, G. & Bonzel, H. P. Adsorption and decomposition of H2O on a K-covered Pt(111) surface. Surf. Sci. 150, 319–338 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Blass, P. M., Zhou, X. L. & White, J. M. Coadsorption and reaction of water and potassium on Ag(111). J. Phys. Chem. 94, 3054–3062 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Nachtrieb, N. H. Self-diffusion in liquid metals. Adv. Phys. 16, 309–323 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Ketteler, G. et al. The nature of water nucleation sites on TiO2(110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 111, 8278–8282 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Kittel, C. Introduction to Solid State Physics (Wiley, 2005).

  • 24.

    Abelès, F., Borensztein, Y., Decrescenzi, M. & Lopezrios, T. Optical evidence for longitudinal-waves in very thin Ag layers. Surf. Sci. 101, 123–130 (1980).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Winter, B., Faubel, M., Vacha, R. & Jungwirth, P. Behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 474, 241–247 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Bonzel, H. P., Pirug, G. & Winkler, A. Adsorption of H2O on potassium films. Surf. Sci. 175, 287–312 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Hart, E. J. & Boag, J. W. Absorption spectrum of hydrated electron in water and in aqueous solutions. J. Am. Chem. Soc. 84, 4090–4095 (1962).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Barzynski, H. & Schulte-Frohlinde, D. On the nature of the electron traps in alkaline ice. Z. Naturforsch. A 22, 2131–2132 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kevan, L. Slovated electron structure in glassy matrices. Acc. Chem. Res. 14, 138–145 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Buttersack, T. et al. Deeply cooled and temperature controlled microjets: liquid ammonia solutions released into vacuum for analysis by photoelectron spectroscopy. Rev. Sci. Instrum. 91, 043101 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Seidel, R., Pohl, M. N., Ali, H., Winter, B. & Aziz, E. F. Advances in liquid phase soft-X-ray photoemission spectroscopy: a new experimental setup at BESSY II. Rev. Sci. Instrum. 88, 073107 (2017).

  • 32.

    Sawhney, K. J. S., Senf, F. & Gudat, W. PGM beamline with constant energy resolution mode for U49-2 undulator at BESSY-II. Nucl. Instrum. Methods Phys. Res. Sect. A 467, 466–469 (2001).

  • Source link