May 11, 2024
Spin-polarized spatially indirect excitons in a topological insulator – Nature

Spin-polarized spatially indirect excitons in a topological insulator – Nature

  • Nuckolls, K. P. et al. Strongly correlated chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 592, 43–48 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Triola, C., Pertsova, A., Markiewicz, R. S. & Balatsky, A. V. Excitonic gap formation in pumped Dirac materials. Phys. Rev. B 95, 205410 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Butov, L. V., Lai, C. W., Ivanov, A. L., Gossard, A. C. & Chemla, D. S. Towards Bose-Einstein condensation of excitons in potential traps. Nature 417, 47–52 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kung, H.-H. et al. Observation of chiral surface excitons in a topological insulator Bi2Se3. Proc. Natl Acad. Sci. USA 116, 4006 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cui, X. et al. Transient excitons at metal surfaces. Nat. Phys. 10, 505–509 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X., Littlewood, P. B., Hybertsen, M. S. & Rice, T. M. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633–1636 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tartakovskii, A. Excitons in 2D heterostructures. Nat. Rev. Phys. 2, 8–9 (2020).

    Article 

    Google Scholar
     

  • Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nechaev, I. A. & Chulkov, E. V. Quasiparticle band gap in the topological insulator Bi2Te3. Phys. Rev. B 88, 165135 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dubroka, A. et al. Interband absorption edge in the topological insulators ({{rm{Bi}}}_{2}{({{rm{Te}}}_{1-x}{{rm{Se}}}_{x})}_{3}). Phys. Rev. B 96, 235202 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mohelský, I. et al. Landau level spectroscopy of Bi2Te3. Phys. Rev. B 102, 085201 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Henk, J. et al. Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3. Phys. Rev. Lett. 108, 206801 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Michiardi, M. et al. Bulk band structure of Bi2Te3. Phys. Rev. B 90, 075105 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sánchez-Barriga, J. et al. Anisotropic effect of warping on the lifetime broadening of topological surface states in angle-resolved photoemission from Bi2Te3. Phys. Rev. B 90, 195413 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hajlaoui, M. et al. Tuning a schottky barrier in a photoexcited topological insulator with transient dirac cone electron-hole asymmetry. Nat. Commun. 5, 3003 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dong, S. et al. Direct measurement of key exciton properties: energy, dynamics, and spatial distribution of the wave function. Nat. Sci. 1, e10010 (2021).

    Article 

    Google Scholar
     

  • Sobota, J. A. et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Te3. Phys. Rev. Lett. 108, 117403 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, S. et al. Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3. Sci. Rep. 5, 13213 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sánchez-Barriga, J. et al. Ultrafast spin-polarization control of Dirac fermions in topological insulators. Phys. Rev. B 93, 155426 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Trovatello, C. et al. The ultrafast onset of exciton formation in 2D semiconductors. Nat. Commun. 11, 5277 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Su-Yang, X. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Jozwiak, C. et al. Widespread spin polarization effects in photoemission from topological insulators. Phys. Rev. B 84, 165113 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Y. et al. Exciton-driven renormalization of quasiparticle band structure in monolayer MoS2. Phys. Rev. B 106, L081117 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, Y. et al. Millimetre-long transport of photogenerated carriers in topological insulators. Nat. Commun. 10, 5723 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, R., Erten, O., Wang, B. & Xing, D. Y. Prediction of a topological p + ip excitonic insulator with parity anomaly. Nat. Commun. 10, 210 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Smallwood, C. L., Jozwiak, C., Zhang, W. E. & Lanzara, A. An ultrafast angle-resolved photoemission apparatus for measuring complex materials. Rev. Sci. Instrum. 83, 123904 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jozwiak, C. et al. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum. 81, 053904 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gotlieb, K., Hussain, Z., Bostwick, A., Lanzara, A. & Jozwiak, C. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer. Rev. Sci. Instrum. 84, 093904 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • The Materials Project. Materials data on Bi2Te3 (sg:166) https://doi.org/10.17188/1274403 (2016).

  • Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys. Condens. Matter 31, 325902 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hamann, D. R. Optimized norm-conserving vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 
    ADS 

    Google Scholar
     

  • van Setten, M. J. et al. The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Miranda, H. P. C., Sanchez, A. M., Paleari, F. & Morlet, A. yambopy. GitHub https://github.com/yambo-code/yambopy (2020).

  • Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. Wanniertools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kobayashi, M. et al. Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga,Mn)As. Phys. Rev. B 89, 205204 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Han, S. W., Cha, G.-B., Kim, K. & Hong, S. C. Hydrogen interaction with a sulfur-vacancy-induced occupied defect state in the electronic band structure of MoS2. Phys. Chem. Chem. Phys. 21, 15302–15309 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Strocov, V. N. et al. k-resolved electronic structure of buried heterostructure and impurity systems by soft-X-ray ARPES. J. Electron Spectros. Relat. Phenomena 236, 1–8 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Sci. Adv. 7, eabg0192 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hedayat, H. et al. Ultrafast evolution of bulk, surface and surface resonance states in photoexcited Bi2Te3. Sci. Rep. 11, 4924 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jung, W. et al. Warping effects in the band and angular-momentum structures of the topological insulator Bi2Te3. Phys. Rev. B 84, 245435 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. & Gedik, N. Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators. Phys. Status Solidi RRL 7, 64–71 (2013).

    Article 

    Google Scholar
     

  • Scholz, M. R. et al. Reversal of the circular dichroism in angle-resolved photoemission from Bi2Te3. Phys. Rev. Lett. 110, 216801 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kondo, T. et al. Visualizing the evolution of surface localization in the topological state of Bi2Se3 by circular dichroism in laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 96, 241413 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. et al. Probing spin chirality of photoexcited topological insulators with circular dichroism: multi-dimensional time-resolved ARPES on Bi2Te2Se and Bi2Se3. J. Electron Spectros. Relat. Phenomena 253, 147125 (2021).

  • Seiler, D. G., Littler, K. H. & Littler, C. L. Bound excitons in the narrow-gap semiconductor InSb. Semicond. Sci. Technol. 1, 383–386 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seisyan, R. P. Diamagnetic excitons and exciton magnetopolaritons in semiconductors. Semicond. Sci. Technol. 27, 053001 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Austin, I. G. The optical properties of bismuth telluride. Proc. Phys. Soc. 72, 545–552 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sehr, R. & Testardi, L. R. The optical properties of p-type Bi2Te3 Sb2Te3 alloys between 2-15 microns. J. Phys. Chem. Solids 23, 1219–1224 (1962).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Greenaway, D. L. & Harbeke, G. Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Physics Chem. Solids 26, 1585–1604 (1965).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomas, G. A. et al. Large electronic-density increase on cooling a layered metal: doped Bi2Te3. Phys. Rev. B 46, 1553–1556 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vilaplana, R. et al. High-pressure vibrational and optical study of Bi2Te3. Phys. Rev. B 84, 104112 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chapler, B. C. et al. Infrared electrodynamics and ferromagnetism in the topological semiconductors Bi2Te3 and Mn-doped Bi2Te3. Phys. Rev. B 89, 235308 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Peiris, F. C. et al. Optical properties of Bi2(Te1−xSex)3 thin films. J. Vac. Sci. Technol. B 37, 031205 (2019).

    Article 

    Google Scholar
     

  • Sánchez-Barriga, J. et al. Subpicosecond spin dynamics of excited states in the topological insulator Bi2Te3. Phys. Rev. B 95, 125405 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Source link