May 4, 2024
State-dependent pupil dilation rapidly shifts visual feature selectivity – Nature

State-dependent pupil dilation rapidly shifts visual feature selectivity – Nature

  • Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Erisken, S. et al. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24, 2899–2907 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7, 13289 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bennett, C., Arroyo, S. & Hestrin, S. Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80, 350–357 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liang, L. et al. Retinal inputs to the thalamus are selectively gated by arousal. Curr. Biol. 30, 3923–3934.e9 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McAdams, C. J. & Maunsell, J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qiu, Y. et al. Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Curr. Biol. 31, 3233–3247.e6 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rowell, C. H. Variable responsiveness of a visual interneurone in the free-moving locust, and its relation to behaviour and arousal. J. Exp. Biol. 55, 727–747 (1971).

    Article 

    Google Scholar
     

  • Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Walking modulates speed sensitivity in Drosophila motion vision. Curr. Biol. 20, 1470–1475 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Busse, L. The influence of locomotion on sensory processing and its underlying neuronal circuits. eNeuroforum 24, A41–A51 (2018).


    Google Scholar
     

  • Schneider, D. M. Reflections of action in sensory cortex. Curr. Opin. Neurobiol. 64, 53–59 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol. Educ. Outreach 1, 476–486 (2008).

    Article 

    Google Scholar
     

  • Szél, A. et al. Unique topographic separation of two spectral classes of cones in the mouse retina. J. Comp. Neurol. 325, 327–342 (1992).

    PubMed 
    Article 

    Google Scholar
     

  • Baden, T. et al. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80, 1206–1217 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walker, E. Y. et al. Inception loops discover what excites neurons most using deep predictive models. Nat. Neurosci. 22, 2060–2065 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lurz, K.-K. et al. Generalization in data-driven models of primary visual cortex. In Proc. International Conference on Learning Representations (2021).

  • Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis. Science 364, eaav9436 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Franke, K. et al. An arbitrary-spectrum spatial visual stimulator for vision research. eLife 8, e48779 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, R. et al. An intriguing failing of convolutional neural networks and the CoordConv solution. In Advances in Neural Information Processing Systems (2018).

  • Rhim, I., Coello-Reyes, G., Ko, H.-K. & Nauhaus, I. Maps of cone opsin input to mouse V1 and higher visual areas. J. Neurophysiol. 117, 1674–1682 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Denman, D. J., Siegle, J. H., Koch, C., Reid, R. C. & Blanche, T. J. Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus. J. Neurosci. 37, 1102–1116 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rhim, I., Coello-Reyes, G. & Nauhaus, I. Variations in photoreceptor throughput to mouse visual cortex and the unique effects on tuning. Sci. Rep. 11, 11937 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schröder, S. et al. Arousal modulates retinal output. Neuron 107, 487–495.e9 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eggermann, E., Kremer, Y., Crochet, S. & Petersen, C. C. H. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep. 9, 1654–1660 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tikidji-Hamburyan, A. et al. Retinal output changes qualitatively with every change in ambient illuminance. Nat. Neurosci. 18, 66–74 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grimes, W. N., Schwartz, G. W. & Rieke, F. The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron 82, 460–473 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pennesi, M. E., Lyubarsky, A. L. & Jr. Pugh, E. N. Extreme responsiveness of the pupil of the dark-adapted mouse to steady retinal illumination. Invest. Ophthalmol. Vis. Sci. 39, 2148–2156 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Safarani, S. et al. Towards robust vision by multi-task learning on monkey visual cortex. In Advances in Neural Information Processing Systems (2021).

  • Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a neural code. Science 252, 1854–1857 (1991).

    ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Froudarakis, E. et al. Object manifold geometry across the mouse cortical visual hierarchy. Preprint at bioRxiv https://doi.org/10.1101/2020.08.20.258798 (2020).

  • Dadarlat, M. C. & Stryker, M. P. Locomotion enhances neural encoding of visual stimuli in mouse V1. J. Neurosci. 37, 3764–3775 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and neuronal performance. Science 240, 338–340 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wiersma, C. A. & Oberjat, T. The selective responsiveness of various crayfish oculomotor fibers to sensory stimuli. Comp. Biochem. Physiol. 26, 1–16 (1968).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila. Nat. Neurosci. 13, 393–399 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bezdudnaya, T. et al. Thalamic burst mode and inattention in the awake LGNd. Neuron 49, 421–432 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Gee, J. W. et al. Mice regulate their attentional intensity and arousal to exploit increases in task utility. Preprint at bioRxiv https://doi.org/10.1101/2022.03.04.482962 (2022).

  • Andermann, M. L., Kerlin, A. M., Roumis, D. K., Glickfeld, L. L. & Reid, R. C. Functional specialization of mouse higher visual cortical areas. Neuron 72, 1025–1039 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219, 2790–2801 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Hulburt, E. O. Explanation of the brightness and color of the sky, particularly the twilight sky. J. Opt. Soc. Am. 43, 113–118 (1953).

    ADS 
    Article 

    Google Scholar
     

  • Storchi, R. et al. Measuring vision using innate behaviours in mice with intact and impaired retina function. Sci. Rep. 9, 10396 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meyer, A. F., Poort, J., O’Keefe, J., Sahani, M. & Linden, J. F. A head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron 100, 46–60.e7 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wald, G. Human vision and the spectrum. Science 101, 653–658 (1945).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lamb, T. D. Why rods and cones? Eye 30, 179–185 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Larsen, R. S. & Waters, J. Neuromodulatory correlates of pupil dilation. Front. Neural Circuits 12, 21 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Douglas, R. H. The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions. Prog. Retin. Eye Res. 66, 17–48 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Eberhardt, L. V., Grön, G., Ulrich, M., Huckauf, A. & Strauch, C. Direct voluntary control of pupil constriction and dilation: exploratory evidence from pupillometry, optometry, skin conductance, perception, and functional MRI. Int. J. Psychophysiol. 168, 33–42 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Froudarakis, E. et al. Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nat. Neurosci. 17, 851–857 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography and areal organization of mouse visual cortex. J. Neurosci. 34, 12587–12600 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5, e14472 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Henriksson, J. T., Bergmanson, J. P. G. & Walsh, J. E. Ultraviolet radiation transmittance of the mouse eye and its individual media components. Exp. Eye Res. 90, 382–387 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schmucker, C. & Schaeffel, F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res. 44, 1857–1867 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

    MathSciNet 
    Article 

    Google Scholar
     

  • Grozdanic, S. et al. Characterization of the pupil light reflex, electroretinogram and tonometric parameters in healthy mouse eyes. Curr. Eye Res. 26, 371–378 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Szatko, K. P. et al. Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11, 3481 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yoshimatsu, T., Schröder, C., Nevala, N. E., Berens, P. & Baden, T. Fovea-like photoreceptor specializations underlie single UV cone driven prey–capture behavior in zebrafish. Neuron 107, 320–337.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perlin, K. An image synthesizer. SIGGRAPH Comput. Graph. 19, 287–296 (1985).

    Article 

    Google Scholar
     

  • Schwartz, O., Pillow, J. W., Rust, N. C. & Simoncelli, E. P. Spike-triggered neural characterization. J. Vis. 6, 484–507 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proc. 32nd International Conference on Machine Learning (2015).

  • Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential linear units (ELUs). In Proc. International Conference on Learning Representations (2016).

  • Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proc. 30th IEEE Conference on Computer Vision and Pattern Recognition (2017).

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. International Conference on Learning Representations (2015).

  • Pospisil, D. A. & Bair, W. The unbiased estimation of the fraction of variance explained by a model. PLoS Comput. Biol. 17, e1009212 (2021).

  • Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).

  • Yatsenko, D. et al. DataJoint: managing big scientific data using MATLAB or Python. Preprint at bioRxiv https://doi.org/10.1101/031658 (2015).

  • Tan, Z., Sun, W., Chen, T.-W., Kim, D. & Ji, N. Neuronal representation of ultraviolet visual stimuli in mouse primary visual cortex. Sci. Rep. 5, 12597 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mouland, J. W. et al. Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision. Curr. Biol. 31, 3391–3400.e4 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link