May 18, 2024

Structural basis for ligand reception by anaplastic lymphoma kinase – Nature

  • 1.

    Weiss, J. B. et al. Anaplastic lymphoma kinase and leukocyte tyrosine kinase: functions and genetic interactions in learning, memory and adult neurogenesis. Pharmacol. Biochem. Behav. 100, 566–574 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Orthofer, M. et al. Identification of ALK in thinness. Cell 181, 1246–1262.e1222, (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Hallberg, B. & Palmer, R. H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer 13, 685–700 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Carpenter, E. L. et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 31, 4859–4867 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Trigg, R. M. & Turner, S. D. ALK in neuroblastoma: biological and therapeutic implications. Cancers 10, 113 (2018).

    Article 

    Google Scholar
     

  • 7.

    Borenas, M. et al. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J. 40, e105784 (2021).

    Article 

    Google Scholar
     

  • 8.

    Reshetnyak, A. V. et al. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: hierarchy and specificity of ligand–receptor interactions. Proc. Natl Acad. Sci. USA 112, 15862–15867 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Guan, J. et al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife 4, e09811 (2015).

    Article 

    Google Scholar
     

  • 10.

    Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Loren, C. E. et al. A crucial role for the Anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep. 4, 781–786 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Zhang, H. et al. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome. Proc. Natl Acad. Sci. USA 111, 15741–15745 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Reshetnyak, A. V. et al. Identification of a biologically active fragment of ALK and LTK-ligand 2 (augmentor-α). Proc. Natl Acad. Sci. USA 115, 8340–8345 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Qin, L. Y. et al. Discovery of 7-(3-(piperazin-1-yl)phenyl)pyrrolo[2,1-f][1,2,4]triazin-4-amine derivatives as highly potent and selective PI3Kδ inhibitors. Bioorg. Med. Chem. Lett. 27, 855–861 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Youn, S. J. et al. Construction of novel repeat proteins with rigid and predictable structures using a shared helix method. Sci. Rep. 7, 2595 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Holm, L. DALI and the persistence of protein shape. Protein Sci. 29, 128–140 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Eck, M. J. & Sprang, S. R. The structure of tumor necrosis factor-α at 2.6 Å resolution. Implications for receptor binding. J. Biol. Chem. 264, 17595–17605 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Warkentin, E. et al. A rare polyglycine type II-like helix motif in naturally occurring proteins. Proteins 85, 2017–2023 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Crick, F. H. & Rich, A. Structure of polyglycine II. Nature 176, 780–781 (1955).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Dunne, M. et al. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure 26, 1573–1582.e1574 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Vadas, O., Jenkins, M. L., Dornan, G. L. & Burke, J. E. Using hydrogen–deuterium exchange mass spectrometry to examine protein–membrane interactions. Methods Enzymol. 583, 143–172 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Sano, R. et al. An antibody–drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci. Transl. Med. 11, eaau9732 (2019).

    Article 

    Google Scholar
     

  • 23.

    Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Ishihara, T. et al. HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell 109, 639–649 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Englund, C. et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425, 512–516 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Lee, H. H., Norris, A., Weiss, J. B. & Frasch, M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425, 507–512 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Murray, P. B. et al. Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Sci. Signal. 8, ra6 (2015).

    Article 

    Google Scholar
     

  • 28.

    Reshetnyak, A. V. et al. Mechanism for the activation of the anaplastic lymphoma kinase receptor. Nature https://doi.org/10.1038/s41586-021-04140-8 (2021).

  • 29.

    Jenni, S., Goyal, Y., von Grotthuss, M., Shvartsman, S. Y. & Klein, D. E. Structural basis of neurohormone perception by the receptor tyrosine kinase torso. Mol. Cell. 60, 941–952 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Klein, D. E., Stayrook, S. E., Shi, F., Narayan, K. & Lemmon, M. A. Structural basis for EGFR ligand sequestration by Argos. Nature 453, 1271–1275 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 

    Google Scholar
     

  • 33.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    Article 

    Google Scholar
     

  • 37.

    Patil, K., et al Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation. Proc. Natl Acad. Sci. USA (in the press).

  • 38.

    Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Source link