May 28, 2024
Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus – Nature

Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus – Nature

  • Turner, N. A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17, 203–218 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hackbarth, C. J. & Chambers, H. F. blaI and blaR1 regulate β-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 37, 1144–1149 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291, 1962–1965 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Herzberg, O. & Moult, J. Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.5 Å resolution. Science 236, 694–701 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Lim, D. & Strynadka, N. C. J. Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9, 870–876 (2002).

    CAS 

    Google Scholar
     

  • Blázquez, B. et al. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53, 1548–1550 (2014).

    Article 

    Google Scholar
     

  • Amoroso, A. et al. A peptidoglycan fragment triggers β-lactam resistance in Bacillus licheniformis. PLoS Pathog. 8, e1002571 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rodvold, K. A. & Mcconeghy, K. W. Methicillin-resistant Staphylococcus aureus therapy: past, present, and future. Clin. Infect. Dis. 58, S20–S27 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. et al. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob. Resist. Infect. Control 10, 101 (2021).

    Article 

    Google Scholar
     

  • Rossi, F. et al. Transferable vancomycin resistance in a community-associated MRSA lineage. N. Engl. J. Med. 370, 1524–1531 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Otero, L. H. et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl Acad. Sci. USA 110, 16808–16813 (2013).

    Article 

    Google Scholar
     

  • Katayama, Y., Ito, T. & Hiramatsu, K. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44, 1549–1555 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Arêde, P., Ministro, J. & Oliveira, D. C. Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the MecI-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA. Antimicrob. Agents Chemother. 57, 3037–3045 (2013).

    Article 

    Google Scholar
     

  • Alexander, J. A. N. et al. Structural analysis of avibactam-mediated activation of the bla and mec divergons in methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 295, 10870–10884 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McKinney, T. K., Sharma, V. K., Craig, W. A. & Archer, G. L. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and β-lactamase regulators transcription of the gene mediating methicillin resistance in Staphylococcus aureus. J. Bacteriol. 183, 6862–6868 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lakhundi, S. & Zhang, K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol. Rev. 31, e00020-18 (2018).

    Article 

    Google Scholar
     

  • Liu, C. et al. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004–2005. Clin. Infect. Dis. 46, 1637–1646 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hanique, S. et al. Evidence of an intramolecular interaction between the two domains of the BlaR1 penicillin receptor during the signal transduction. J. Biol. Chem. 279, 14264–14272 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Frederick, T. E., Wilson, B. D., Cha, J., Mobashery, S. & Peng, J. W. Revealing cell-surface intramolecular interactions in the BlaR1 protein of methicillin-resistant Staphylococcus aureus by NMR spectroscopy. Biochemistry 53, 10–12 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Belluzo, B. S. et al. An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance. Sci. Rep. 9, 19558 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sala, C. et al. Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis. Mol. Microbiol. 71, 1102–1116 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sandhu, B. K., Edwards, A. N., Anderson, S. E., Woods, E. C. & McBride, S. M. Regulation and anaerobic function of the Clostridioides difficile β-lactamase. Antimicrob. Agents Chemother. 64, e01496-19 (2019).

    Article 

    Google Scholar
     

  • Sobhanifar, S., Prehna, G. & Strynadka, N. in Handbook of Proteolytic Enzymes (eds Barrett, A. et al.) 1237–1243 (Academic, 2012).

  • Mierau, I. & Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68, 705–717 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Llarrull, L. I. & Mobashery, S. Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus. Biochemistry 51, 4642–4649 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, G., Meier, T. I., Kahl, S. D., Gee, K. R. & Blaszczak, L. C. BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob. Agents Chemother. 43, 1124–1128 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Llarrull, L. I., Toth, M., Champion, M. M. & Mobashery, S. Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J. Biol. Chem. 286, 38148–38158 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Viklund, H., Granseth, E. & Elofsson, A. Structural classification and prediction of reentrant regions in α-helical transmembrane proteins: application to complete genomes. J. Mol. Biol. 361, 591–603 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Jongeneel, C. V., Bouvier, J. & Bairoch, A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 242, 211–214 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Granseth, E., Daley, D. O., Rapp, M., Melén, K. & von Heijne, G. Experimentally constrained topology models for 51,208 bacterial inner membrane proteins. J. Mol. Biol. 352, 489–494 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Daley, D. O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005).

    Article 
    CAS 

    Google Scholar
     

  • White, D. C. & Frerman, F. E. Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J. Bacteriol. 94, 1854–1867 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Young, S. A., Desbois, A. P. & Coote, P. J. Characterisation of Staphylococcus aureus lipids by nanoelectrospray ionisation tandem mass spectrometry (nESI-MS/MS). Preprint at bioRxiv https://doi.org/10.1101/593483 (2019).

  • Schleifer, K. H. et al. Transfer of Streptococcus lactis and related Streptococci to the genus Lactococcus gen. nov. Syst. Appl. Microbiol. 6, 183–195 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Driessen, A. J. M., Zheng, T., Veld, G. I. T., Op Den Kamp, J. A. F. & Konings, W. N. Lipid requirement of the branched-chain amino acid transport system of Streptococcus cremoris. Biochemistry 27, 865–872 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Wilke, M. S., Hills, T. L., Zhang, H.-Z., Chambers, H. F. & Strynadka, N. C. J. Crystal structures of the Apo and penicillin-acylated forms of the BlaR1 β-lactam sensor of Staphylococcus aureus. J. Biol. Chem. 279, 47278–47287 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dimaio, F. et al. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361–365 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Staude, M. W. et al. Investigation of signal transduction routes within the sensor/transducer protein BlaR1 of Staphylococcus aureus. Biochemistry 54, 1600–1610 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hooper, N. M. Families of zinc metalloproteases. FEBS Lett. 354, 1–6 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Marie-Claire, C. et al. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding. Biochemistry 36, 13938–13945 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Tyndall, J. D. A., Nall, T. & Fairlie, D. P. Proteases universally recognize beta strands in their active sites. Chem. Rev. 105, 973–999 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gomis-Rüth, F. X., Botelho, T. O. & Bode, W. A standard orientation for metallopeptidases. Biochim. Biophys. Acta 1824, 157–163 (2012).

    Article 

    Google Scholar
     

  • Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kobayashi, T., Zhu, Y. F., Nicholls, N. J. & Lampen, J. O. A second regulatory gene, blaR1, encoding a potential penicillin-binding protein required for induction of β-lactamase in Bacillus licheniformis. J. Bacteriol. 169, 3873–3878 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Quigley, A. et al. The structural basis of ZMPSTE24-dependent laminopathies. Science 339, 1604–1607 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pryor, E. E. et al. Structure of the integral membrane protein CAAX protease Ste24p. Science 339, 1600–1604 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Berzigotti, S., Benlafya, K., Sépulchre, J., Amoroso, A. & Joris, B. Bacillus licheniformis BlaR1 L3 loop is a zinc metalloprotease activated by self-proteolysis. PLoS ONE 7, e36400 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Beaumont, A. et al. The role of histidine 231 in thermolysin-like enzymes: a site-directed mutagenesis study. J. Biol. Chem. 270, 16803–16808 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Boudreau, M. A., Fishovitz, J., Llarrull, L. I., Xiao, Q. & Mobashery, S. Phosphorylation of BlaR1 in manifestation of antibiotic resistance in methicillin-resistant Staphylococcus aureus and its abrogation by small molecules. ACS Infect. Dis. 1, 454–459 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Powers, M. E. et al. Type I signal peptidase and protein secretion in Staphylococcus epidermidis. J. Bacteriol. 193, 2677–2686 (2011).

  • Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M. & de Vos, W. M. Quorum sensing-controlled gene expression in lactic acid bacteria. J. Biotechnol. 64, 15–21 (1998).

    Article 
    CAS 

    Google Scholar
     

  • van den Ent, F. & Löwe, J. RF cloning: a restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67, 67–74 (2006).

    Article 

    Google Scholar
     

  • Geertsma, E. R. & Poolman, B. High-throughput cloning and expression in recalcitrant bacteria. Nat. Methods 4, 705–707 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Terzaghi, B. & Sandine, W. Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29, 807–813 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Gasteiger, E. et al. in The Proteomics Protocols Handbook (ed. Walker, J. M.) 571–607 (Springer, 2005); https://doi.org/10.1385/1-59259-890-0:571

  • Hauer, F. et al. GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 23, 1769–1775 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Coombs, D. H. & Watts, N. R. M. Generating sucrose gradients in three minutes by tilted tube rotation. Anal. Biochem. 148, 254–259 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Grossman, M. J. & Lampen, J. O. Purification and DNA binding properties of the blal gene product, repressor for the (3-lactamase gene, blaP, of Bacillus licheniformis. Nucleic Acids Res. 15, 6049–6062 (1987).

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2—anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 

    Google Scholar
     

  • Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Asarnow, D., Palovcak, E. & Cheng, Y. UCSF pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 54, 5.6.1–5.6.37 (2016).

    Article 

    Google Scholar
     

  • Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chan, L. C. et al. PBP 4 mediates high-level resistance to new-generation cephalosporins in Staphylococcus aureus. Antimicrob. Agents Chemother. 60, 3934–3941 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chan, L. C. et al. Ceftobiprole- and Ceftaroline-resistant methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 2960–2963 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lowy, F. D. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111, 1265–1273 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Source link