May 4, 2024
Structural evidence for intermediates during O2 formation in photosystem II – Nature

Structural evidence for intermediates during O2 formation in photosystem II – Nature

  • Kok, B., Forbush, B. & McGloin, M. Cooperation of charges in photosynthetic O2 evolution. 1. A linear four-step mechanism. Photochem. Photobiol. 11, 457–475 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yano, J. & Yachandra, V. K. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, N., Pantazis, D. A., Neese, F. & Lubitz, W. Biological water oxidation. Acc. Chem. Res. 46, 1588–1596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Suga, M. et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366, 334–338 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ibrahim, M. et al. Untangling the sequence of events during the S2→S3 transition in photosystem II and implications for the water oxidation mechanism. Proc. Natl Acad. Sci. USA 117, 12624–12635 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Brändén, G. & Neutze, R. Advances and challenges in time-resolved macromolecular crystallography. Science 373, eaba0954 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hussein, R. et al. Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition. Nat. Commun. 12, 6531 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Fransson, T. et al. Effects of x-ray free-electron laser pulse intensity on the Mn Kβ1,3 x-ray emission spectrum in photosystem II—a case study for metalloprotein crystals and solutions. Struct. Dyn. 8, 064302 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babcock, G. T., Blankenship, R. E. & Sauer, K. Reaction-kinetics for positive charge accumulation on water side of chloroplast photosystem II. FEBS Lett. 61, 286–289 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rappaport, F., Blanchard-Desce, M. & Lavergne, J. Kinetics of electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim. Biophys. Acta Bioenerg. 1184, 178–192 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Razeghifard, M. R. & Pace, R. J. EPR kinetic studies of oxygen relaese in thylakoids and PSII membranes: a kinetic intermediate in the S3 to S0 transition. Biochemistry 38, 1252–1257 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerencsér, L. & Dau, H. Water oxidation by photosystem II: H2O-D2O exchange and the influence of pH support formation of an intermediate by removal of a proton before dioxygen creation. Biochemistry 49, 10098–10106 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dilbeck, P. L. et al. The D1-D61N mutation in Synechocystis sp. PCC 6803 allows the observation of pH-sensitive intermediates in the formation and release of O2 from photosystem II. Biochemistry 51, 1079–1091 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noguchi, T. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. Biochim. Biophys. Acta Bioenerg. 1847, 35–45 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Han, G., Chernev, P., Styring, S., Messinger, J. & Mamedov, F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem. Sci. 13, 8667–8678 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haumann, M. et al. Photosynthetic O2 formation tracked by time-resolved x-ray experiments. Science 310, 1019–1021 (2005).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bao, H. & Burnap, R. L. Structural rearrangements preceding dioxygen formation by the water oxidation complex of photosystem II. Proc. Natl Acad. Sci. USA 112, E6139–E6147 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wöhri, A. B. et al. Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction. Science 328, 630–633 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Noguchi, T., Suzuki, H., Tsuno, M., Sugiura, M. & Kato, C. Time-resolved infrared detection of the proton and protein dynamics during photosynthetic oxygen evolution. Biochemistry 51, 3205–3214 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, H., Sugiura, M. & Noguchi, T. Monitoring proton release during photosynthetic water oxidation in photosystem II by means of isotope-edited infrared spectroscopy. J. Am. Chem. Soc. 131, 7849–7857 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tso, J., Sivaraja, M. & Dismukes, G. C. Calcium limits substrate accessibility or reactivity at the manganese cluster in photosynthetic water oxidation. Biochemistry 30, 4734–4739 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, C. J. & Debus, R. J. One of the substrate waters for O2 formation in photosystem II is provided by the water-splitting Mn4CaO5 cluster’s Ca2+ ion. Biochemistry 58, 3185–3192 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray, J. W. & Barber, J. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J. Struct. Biol. 159, 228–237 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, F. M. & Styring, S. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim. Biophys. Acta 1777, 140–153 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabdulkhakov, A. et al. Probing the accessibility of the Mn4Ca cluster in photosystem II: channels calculation, noble gas derivatization, and cocrystallization with DMSO. Structure 17, 1223–1234 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vassiliev, S., Zaraiskaya, T. & Bruce, D. Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. Biochim. Biophys. Acta Bioenerg. 1817, 1671–1678 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ishikita, H., Saenger, W., Loll, B., Biesiadka, J. & Knapp, E. W. Energetics of a possible proton exit pathway for water oxidation in photosystem II. Biochemistry 45, 2063–2071 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Service, R. J., Hillier, W. & Debus, R. J. Evidence from FTIR difference spectroscopy of an extensive network of hydrogen bonds near the oxygen-evolving Mn4Ca cluster of photosystem II involving D1-Glu65, D2-Glu312, and D1-Glu329. Biochemistry 49, 6655–6669 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klauss, A., Haumann, M. & Dau, H. Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc. Natl Acad. Sci. USA 109, 16035–16040 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Allgöwer, F., Gamiz-Hernandez, A. P., Rutherford, A. W. & Kaila, V. R. I. Molecular principles of redox-coupled protonation dynamics in photosystem II. J. Am. Chem. Soc. 144, 7171–7180 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capone, M., Narzi, D. & Guidoni, L. Mechanism of oxygen evolution and Mn4CaO5 cluster restoration in the natural water-oxidizing catalyst. Biochemistry 60, 2341–2348 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Debus, R. J. Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II. Biochemistry 53, 2941–2955 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renger, G. Mechanism of light induced water splitting in photosystem II of oxygen evolving photosynthetic organisms. Biochim. Biophys. Acta Bioenerg. 1817, 1164–1176 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ishida, N. et al. Biosynthetic exchange of bromide for chloride and strontium for calcium in the photosystem II oxygen-evolving enzymes. J. Biol. Chem. 283, 13330–13340 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assuncao, R., Zaharieva, I. & Dau, H. Ammonia as a substrate-water analogue in photosynthetic water oxidation: influence on activation barrier of the O2-formation step. Biochim. Biophys. Acta Bioenerg. 1860, 533–540 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegbahn, P. E. Structures and energetics for O2 formation in photosystem II. Acc. Chem. Res. 42, 1871–1880 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sproviero, E. M., Gascon, J. A., McEvoy, J. P., Brudvig, G. W. & Batista, V. S. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J. Am. Chem. Soc. 130, 3428–3442 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rummel, F. & O’Malley, P. J. How nature makes O2: an electronic level mechanism for water oxidation in photosynthesis. J. Phys. Chem. B 126, 8214–8221 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y., Zhang, B., Kloo, L. & Sun, L. Necessity of structural rearrangements for O-O bond formation between O5 and W2 in photosystem II. J. Energy Chem. 57, 436–442 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Messinger, J. Evaluation of different mechanistic proposals for water oxidation in photosynthesis on the basis of Mn4OxCa structures for the catalytic site and spectroscopic data. Phys. Chem. Chem. Phys. 6, 4764–4771 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nilsson, H., Cournac, L., Rappaport, F., Messinger, J. & Lavergne, J. Estimation of the driving force for dioxygen formation in photosynthesis. Biochim. Biophys. Acta 1857, 23–33 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapatskiy, L. et al. Detection of the water-binding sites of the oxygen-evolving complex of Photosystem II using W-band 17O electron-electron double resonance-detected NMR spectroscopy. J. Am. Chem. Soc. 134, 16619–16634 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, K. M. et al. Rapid evolution of the photosystem II electronic structure during water splitting. Phys. Rev. X 8, 041014 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi, K. et al. Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coord. Chem. Rev. 471, 214742 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sakashita, N., Ishikita, H. & Saito, K. Rigidly hydrogen-bonded water molecules facilitate proton transfer in photosystem II. Phys. Chem. Chem. Phys. 22, 15831–15841 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hellmich, J. et al. Native-like Photosystem II superstructure at 2.44 Å resolution through detergent extraction from the protein crystal. Structure 22, 1607–1615 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibrahim, M. et al. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures. Struct. Dyn. 2, 041705 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fransson, T. et al. X-ray emission spectroscopy as an in situ diagnostic tool for X-ray crystallography of metalloproteins using an X-ray free-electron laser. Biochemistry 57, 4629–4637 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roessler, C. G. et al. Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24, 631–640 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuller, F. D. et al. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat. Methods 14, 443–449 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewster, A. S. et al. Improving signal strength in serial crystallography with DIALS geometry refinement. Acta Crystallogr. D Struct. Biol. 74, 877–894 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewster, A. S., Young, I. D., Lyubimov, A., Bhowmick, A. & Sauter, N. K. Processing serial crystallographic data from XFELs or synchrotrons using the cctbx.xfel GUI. Comput. Crystallogr. Newsl. 10, 22–39 (2019).


    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in. Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Struct. Biol. 66, 486–501 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lang, P. T., Holton, J. M., Fraser, J. S. & Alber, T. Protein structural ensembles are revealed by redefining X-ray electron density noise. Proc. Natl Acad. Sci. USA 111, 237–242 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 73, 148–157 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrödinger, LLC. The PyMOL Molecular Graphics System, version 1.8 (2015).

  • Bhowmick A. asmit3/eden: release v.0.1.1. Zenodo https://doi.org/10.5281/zenodo.7734707 (2023).

  • Source link