May 29, 2024

Structural insights into hepatitis C virus receptor binding and entry – Nature

  • 1.

    Gerold, G., Moeller, R. & Pietschmann, T. Hepatitis C virus entry: protein interactions and fusion determinants governing productive hepatocyte invasion. Cold Spring Harb. Perspect. Med. 10, a036830 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Tzarum, N., Wilson, I. A. & Law, M. The neutralizing face of hepatitis C virus E2 envelope glycoprotein. Front. Immunol. 9, 1315 (2018).

    Article 

    Google Scholar
     

  • 3.

    Tscherne, D. M. et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J. Virol. 80, 1734–1741 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Rothwangl, K. B., Manicassamy, B., Uprichard, S. L. & Rong, L. Dissecting the role of putative CD81 binding regions of E2 in mediating HCV entry: putative CD81 binding region 1 is not involved in CD81 binding. Virol. J. 5, 46 (2008).

    Article 

    Google Scholar
     

  • 5.

    Drummer, H. E., Wilson, K. A. & Poumbourios, P. Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. J. Virol. 76, 11143–11147 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Drummer, H. E., Boo, I., Maerz, A. L. & Poumbourios, P. A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry. J. Virol. 80, 7844–7853 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Owsianka, A. M. et al. Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J. Virol. 80, 8695–8704 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Zhao, Z. et al. A neutralization epitope in the hepatitis C virus E2 glycoprotein interacts with host entry factor CD81. PLoS One 9, e84346 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Higginbottom, A. et al. Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J. Virol. 74, 3642–3649 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Flint, M. et al. Diverse CD81 proteins support hepatitis C virus infection. J. Virol. 80, 11331–11342 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Allander, T., Forns, X., Emerson, S. U., Purcell, R. H. & Bukh, J. Hepatitis C virus envelope protein E2 binds to CD81 of tamarins. Virology 277, 358–367 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Khan, A. G. et al. Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 509, 381–384 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Kitadokoro, K. et al. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J. 20, 12–18 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Cunha, E. S. et al. Mechanism of structural tuning of the hepatitis C virus human cellular receptor CD81 large extracellular loop. Structure 25, 53–65 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Dearborn, A. D. & Marcotrigiano, J. Hepatitis C virus structure: defined by what it is not. Cold Spring Harb. Perspect. Med. 10, a036822 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Susa, K. J., Rawson, S., Kruse, A. C. & Blacklow, S. C. Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81. Science 371, 300–305 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Flyak, A. I. et al. HCV broadly neutralizing antibodies use a CDRH3 disulfide motif to recognize an E2 glycoprotein site that can be targeted for vaccine design. Cell Host Microbe 24, 703–716 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kong, L. et al. Hepatitis C virus E2 envelope glycoprotein core structure. Science 342, 1090–1094 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Flyak, A. I. et al. An ultralong CDRH2 in HCV neutralizing antibody demonstrates structural plasticity of antibodies against E2 glycoprotein. eLife 9, e53169 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Tzarum, N. et al. Genetic and structural insights into broad neutralization of hepatitis C virus by human VH1-69 antibodies. Sci. Adv. 5, eaav1882 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Zimmerman, B. et al. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Rajesh, S. et al. Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81. J. Virol. 86, 9606–9616 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Vasiliauskaite, I. et al. Conformational flexibility in the immunoglobulin-like domain of the hepatitis C virus glycoprotein E2. mBio 8, e00382-17 (2017).

    Article 

    Google Scholar
     

  • 24.

    Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Kielian, M. Mechanisms of virus membrane fusion proteins. Annu. Rev. Virol. 1, 171–189 (2014).

    Article 

    Google Scholar
     

  • 26.

    Boo, I. et al. Distinct roles in folding, CD81 receptor binding and viral entry for conserved histidine residues of hepatitis C virus glycoprotein E1 and E2. Biochem. J. 443, 85–94 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Sharma, N. R. et al. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. J. Biol. Chem. 286, 30361–30376 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    White, J. M. & Whittaker, G. R. Fusion of enveloped viruses in endosomes. Traffic 17, 593–614 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Li, H. F., Huang, C. H., Ai, L. S., Chuang, C. K. & Chen, S. S. Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry. J. Biomed. Sci. 16, 89 (2009).

    Article 

    Google Scholar
     

  • 30.

    Yost, S. A., Whidby, J., Khan, A. G., Wang, Y. & Marcotrigiano, J. Overcoming challenges of hepatitis C virus envelope glycoprotein production in mammalian cells. Methods Mol. Biol. 1911, 305–316 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002).

    Article 

    Google Scholar
     

  • 32.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 

    Google Scholar
     

  • 33.

    Emsley, P. & Crispin, M. Structural analysis of glycoproteins: building N-linked glycans with Coot. Acta Crystallogr. D 74, 256–263 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    DeLano, W. L. The PyMOL molecular graphics system. http://www.pymol.org (Schrödinger, 2002).

  • 39.

    Keller, S. et al. High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal. Chem. 84, 5066–5073 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Zhao, H., Piszczek, G. & Schuck, P. SEDPHAT—a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76, 137–148 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Source link