May 27, 2024

Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs – Nature

  • 1.

    Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    O’Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    Article 

    Google Scholar
     

  • 4.

    Mohiuddin, I. S. & Kang, M. H. DNA-PK as an emerging therapeutic target in cancer. Front. Oncol. 9, 635 (2019).

    Article 

    Google Scholar
     

  • 5.

    Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Yang, F., Teves, S. S., Kemp, C. J. & Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta Rev. Cancer 1845, 84–89 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Davis, A. J., Chen, B. P. C. & Chen, D. J. DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair 17, 21–29 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. F. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Jette, N. & Lees-Miller, S. P. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog. Biophys. Mol. Biol. 117, 194–205 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Harnor, S. J., Brennan, A. & Cano, C. Targeting DNA-dependent protein kinase for cancer therapy. ChemMedChem 12, 895–900 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Fok, J. H. L. et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat. Commun. 10, 5065 (2019).

  • 12.

    Yang, H. et al. MTOR kinase structure, mechanism and regulation. Nature 497, 217–223 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Chaplin, A. K. et al. Dimers of DNA-PK create a stage for DNA double-strand break repair. Nat. Struct. Mol. Biol. 28, 13–19 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Boulton, S., Kyle, S., Yalçintepe, L. & Durkacz, B. W. Wortmannin is a potent inhibitor of DNA double strand break but not single strand break repair in Chinese hamster ovary cells. Carcinogenesis 17, 2285–2290 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Walker, E. H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Hardcastle, I. R. et al. Discovery of potent chromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK) using a small-molecule library approach. J. Med. Chem. 48, 7829–7846 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Goldberg, F. W. et al. The discovery of 7-methyl-2-[(7-methyl[1,2,4]triazolo[1,5-a]pyridin-6-yl)amino]-9-(tetrahydro-2H-pyran-4-yl)-7,9-dihydro-8H-purin-8-one (AZD7648), a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor. J. Med. Chem. 63, 3461–3471 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Zenke, F. T. et al. Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Mol. Cancer Ther. 19, 1091–1101 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    van Bussel, M. T. J. et al. A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. Br. J. Cancer 124, 728–735 (2021).

    Article 

    Google Scholar
     

  • 20.

    Wise, H. C. et al. Activity of M3814, an oral DNA-PK inhibitor, in combination with topoisomerase II inhibitors in ovarian cancer models. Sci. Rep. 9, 18882 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Sibanda, B. L., Chirgadze, D. Y., Ascher, D. B. & Blundell, T. L. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 355, 520–524 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Chen, X. et al. Structure of an activated DNA-PK and its implications for NHEJ. Mol. Cell 81, 801-810 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Sharif, H. et al. Cryo-EM structure of the DNA-PK holoenzyme. Proc. Natl Acad. Sci. USA 114, 7367–7372 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Chen, S. et al. Structural basis of long-range to short-range synaptic transition in NHEJ. Nature https://doi.org/10.1038/s41586-021-03458-7 (2021).

  • 25.

    Yin, X., Liu, M., Tian, Y., Wang, J. & Xu, Y. Cryo-EM structure of human DNA-PK holoenzyme. Cell Res. 27, 1341–1350 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Chaplin, A. K. et al. Cryo-EM of NHEJ supercomplexes provides insights into DNA repair. Mol. Cell 81, 3400–3409 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Davis, A. J., Lee, K. J. & Chen, D. J. The N-terminal region of the DNA-dependent protein kinase catalytic subunit is required for its DNA double-stranded break-mediated activation. J. Biol. Chem. 288, 7037–7046 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Graham, T. G. W., Walter, J. C. & Loparo, J. J. Two-stage synapsis of DNA ends during non-homologous end joining. Mol. Cell. 61, 850–858 (2016).

  • 29.

    Radoux, C. J., Olsson, T. S. G., Pitt, W. R., Groom, C. R. & Blundell, T. L. Identifying interactions that determine fragment binding at protein hotspots. J. Med. Chem. 59, 4314–4325 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Hajduk, P. J., Huth, J. R. & Tse, C. Predicting protein druggability. Drug Discov. 10, 1675–1682 (2005).

    CAS 

    Google Scholar
     

  • 31.

    Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Sun, X. et al. Protacs: great opportunities for academia and industry. Signal Transduct. Target. Ther. 4, 64 (2019).

    Article 

    Google Scholar
     

  • 33.

    Liang, S. et al. Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: insights from X-ray diffraction and cryo-EM. Prog. Biophys. Mol. Biol. 163, 60–73 (2020).

  • 34.

    Menolfi, D. & Zha, S. ATM, ATR and DNA-PKcs kinases—the lessons from the mouse models: inhibition ≠ deletion. Cell Biosci. 10, 8 (2020).

    Article 

    Google Scholar
     

  • 35.

    Bokori-Brown, M. et al. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein. Nat. Commun. 7, 11293 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Punjani, A., Brubaker, M. A. & Fleet, D. J. Building proteins in a day: efficient 3D molecular structure estimation with electron cryomicroscopy. IEEE Trans. Pattern Anal. Mach. Intell. 39, 706–718 (2017).

    Article 

    Google Scholar
     

  • 39.

    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Pettersen, E. F., et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70-82 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Source link