April 26, 2024
Structural insights into the mechanism of the sodium/iodide symporter – Nature

Structural insights into the mechanism of the sodium/iodide symporter – Nature

  • Portulano, C., Paroder-Belenitsky, M. & Carrasco, N. The Na+/I symporter (NIS): mechanism and medical impact. Endocr. Rev. 35, 106–149 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ravera, S., Reyna-Neyra, A., Ferrandino, G., Amzel, L. M. & Carrasco, N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annu. Rev. Physiol. 79, 261–289 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dai, G., Levy, O. & Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 379, 458–460 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z., Liu, F. & Chen, J. Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc. Natl Acad. Sci. USA 115, 12757–12762 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Reyna-Neyra, A. et al. The iodide transport defect-causing Y348D mutation in the Na(+)/I(-) symporter renders the protein intrinsically inactive and impairs its targeting to the plasma membrane. Thyroid 31, 1272–1281 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tazebay, U. H. et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Spitzweg, C. et al. The sodium iodide symporter (NIS): novel applications for radionuclide imaging and treatment. Endocr. Relat. Cancer 28, T193–T213 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kitzberger, C. et al. The sodium iodide symporter (NIS) as theranostic gene: its emerging role in new imaging modalities and non-viral gene therapy. EJNMMI Res. 12, 25 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Urnauer, S. et al. EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases. Oncotarget 8, 92195–92208 (2017).

    Article 

    Google Scholar
     

  • Miller, A. & Russell, S. J. The use of the NIS reporter gene for optimizing oncolytic virotherapy. Expert Opin. Biol. Ther. 16, 15–32 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Nicola, J. P., Amzel, L. M. & Carrasco, N. Asn441 plays a key role in folding and function of the Na+/I symporter (NIS). FASEB J. 27, 3229–3238 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nicola, J. P. et al. Sodium/iodide symporter mutant V270E causes stunted growth but no cognitive deficiency. J. Clin. Endocrinol. Metab. 100, E1353–E1361 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Paroder-Belenitsky, M. et al. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS). Proc. Natl Acad. Sci. USA 108, 17933–17938 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Levy, O. et al. N-linked glycosylation of the thyroid Na+/I symporter (NIS). Implications for its secondary structure model. J. Biol. Chem. 273, 22657–22663 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Levy, O. et al. Characterization of the thyroid Na+/I symporter with an anti-COOH terminus antibody. Proc. Natl Acad. Sci. USA 94, 5568–5573 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Paroder, V., Nicola, J. P., Ginter, C. S. & Carrasco, N. The iodide transport defect-causing mutation R124H: a δ-amino group at position 124 is critical for maturation and trafficking of the Na+/I- symporter (NIS). J. Cell Sci. 126, 3305–3313 (2013).

    CAS 

    Google Scholar
     

  • De la Vieja, A., Reed, M. D., Ginter, C. S. & Carrasco, N. Amino acid residues in transmembrane segment IX of the Na+/I symporter play a role in its Na+ dependence and are critical for transport activity. J. Biol. Chem. 282, 25290–25298 (2007).

    Article 

    Google Scholar
     

  • Chew, T. A. et al. Structure and mechanism of the cation-chloride cotransporter NKCC1. Nature 572, 488–492 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Han, L. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature 601, 274–279(2022).

    Article 
    CAS 

    Google Scholar
     

  • Niu, Y. et al. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 601, 280–284 (2021).

    Article 

    Google Scholar
     

  • Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Liu, Z., Frank, J. & Moore, P. B. Identification of ions in experimental electrostatic potential maps. IUCrJ 5, 375–381 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhekova, H. R. et al. Mapping of ion and substrate binding sites in human sodium iodide symporter (hNIS). J. Chem. Inf. Model. 60, 1652–1665 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nicola, J. P., Carrasco, N. & Amzel, L. M. Physiological sodium concentrations enhance the iodide affinity of the Na+/I symporter. Nat. Commun. 5, 3948 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ravera, S., Quick, M., Nicola, J. P., Carrasco, N. & Amzel, L. M. Beyond non-integer Hill coefficients: a novel approach to analyzing binding data, applied to Na+-driven transporters. J. Gen. Physiol. 145, 555–563 (2015).

    Article 

    Google Scholar
     

  • Dohan, O. et al. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc. Natl Acad. Sci. USA 104, 20250–20255 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tran, N. et al. Thyroid-stimulating hormone increases active transport of perchlorate into thyroid cells. Am. J. Physiol. Endocrinol. Metab. 294, E802–E806 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zuckier, L. S. et al. Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter-expressing tissues in vivo. J. Nucl. Med. 45, 500–507 (2004).

    CAS 

    Google Scholar
     

  • Eskandari, S. et al. Thyroid Na+/I- symporter. Mechanism, stoichiometry, and specificity. J. Biol. Chem. 272, 27230–27238 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Llorente-Esteban, A. et al. Allosteric regulation of mammalian Na+/I symporter activity by perchlorate. Nat. Struct. Mol. Biol. 27, 533–539 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boutagy, N. E. et al. Noninvasive in vivo quantification of adeno-associated virus serotype 9-mediated expression of the sodium/iodide symporter under hindlimb ischemia and neuraminidase desialylation in skeletal muscle using single-photon emission computed tomography/computed tomography. Circ. Cardiovasc. Imaging 12, e009063 (2019).

    Article 

    Google Scholar
     

  • Pavelka, A. et al. CAVER: algorithms for analyzing dynamics of tunnels in macromolecules. IEEE/ACM Trans. Comput. Biol. Bioinform. 13, 505–517 (2016).

    Article 

    Google Scholar
     

  • Ferrandino, G. et al. Na+ coordination at the Na2 site of the Na+/I symporter. Proc. Natl Acad. Sci. USA 113, E5379–E5388 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sun, L. et al. Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters. J. Phys. Chem. 116, 3198–3204 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Carugo, O. Buried chloride stereochemistry in the Protein Data Bank. BMC Struct. Biol. 14, 19 (2014).

    Article 

    Google Scholar
     

  • Kang, B., Tang, H., Zhao, Z. & Song, S. Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS Omega 5, 6229–6239 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Marcus, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 51, 111–127 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Coleman, J. A. & Gouaux, E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat. Struct. Mol. Biol. 25, 170–175 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Levy, O., Ginter, C. S., De la Vieja, A., Levy, D. & Carrasco, N. Identification of a structural requirement for thyroid Na+/I- symporter (NIS) function from analysis of a mutation that causes human congenital hypothyroidism. FEBS Lett. 429, 36–40 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Ferrandino, G. et al. Na+ coordination at the Na2 site of the Na+/I- symporter. Proc. Natl Acad. Sci. USA 113, E5379–E5388 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ravera, S., Quick, M., Nicola, J. P., Carrasco, N. & Amzel, L. M. Beyond non-integer Hill coefficients: a novel approach to analyzing binding data, applied to Na+-driven transporters. J. Gen. Physiol. 145, 555–563 (2015).

    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 

    Google Scholar
     

  • Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moriya, T. et al. Size matters: optimal mask diameter and box size for single-particle cryogenic electron microscopy. Preprint at bioRxiv https://doi.org/10.1101/2020.08.23.263707 (2020).

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Górski, K. M. et al. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005).

  • Wang, J., Liu, Z., Frank, J. & Moore, P. B. Identification of ions in experimental electrostatic potential maps. IUCrJ 5, 375–381 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article 

    Google Scholar
     

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article 

    Google Scholar
     

  • Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Li, P., Song, L. F. & Merz, K. M. Jr. Systematic parameterization of monovalent ions employing the nonbonded model. J. Chem. Theory Comput. 11, 1645–1657 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Source link