May 7, 2024

Structural insights into Ubr1-mediated N-degron polyubiquitination – Nature

  • 1.

    Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Bartel, B., Wunning, I. & Varshavsky, A. The recognition component of the N-end rule pathway. EMBO J. 9, 3179–3189 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Chen, S. J., Wu, X., Wadas, B., Oh, J. H. & Varshavsky, A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355, eaal3655 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Kim, J. M. et al. Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway. Science 362, eaat0174 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Tasaki, T., Sriram, S. M., Park, K. S. & Kwon, Y. T. The N-end rule pathway. Annu. Rev. Biochem. 81, 261–289 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zenker, M. et al. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat. Genet. 37, 1345–1350 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Bodnar, N. O. & Rapoport, T. A. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell 169, 722–735 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Petroski, M. D. & Deshaies, R. J. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123, 1107–1120 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Tasaki, T. et al. The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284, 1884–1895 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Baek, K. et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 578, 461–466 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Horn-Ghetko, D. et al. A Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Nature 590, 671–676 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Rusnac, D. V. & Zheng, N. Structural biology of CRL ubiquitin ligases. Adv. Exp. Med. Biol. 1217, 9–31 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Matta-Camacho, E., Kozlov, G., Li, F. F. & Gehring, K. Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat. Struct. Mol. Biol. 17, 1182–1187 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Choi, W. S. et al. Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17, 1175–1181 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Du, F. Y., Navarro-Garcia, F., Xia, Z. X., Tasaki, T. & Varshavsky, A. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc. Natl Acad. Sci. USA 99, 14110–14115 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Roman-Hernandez, G., Grant, R. A., Sauer, R. T. & Baker, T. A. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proc. Natl Acad. Sci. USA 106, 8888–8893 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    AhYoung, A. P., Koehl, A., Vizcarra, C. L., Cascio, D. & Egea, P. F. Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci. 25, 689–701 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Kim, L. et al. Structural basis for the N-degron specificity of ClpS1 from Arabidopsis thaliana. Protein Sci. 30, 700–708 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Das, R. et al. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34, 674–685 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Metzger, M. B. et al. A Structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Mol. Cell 50, 516–527 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Koliopoulos, M. G., Esposito, D., Christodoulou, E., Taylor, I. A. & Rittinger, K. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J. 35, 1204–1218 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Zheng, Q. et al. An E1-catalyzed chemoenzymatic strategy to isopeptide-N-ethylated deubiquitylase-resistant ubiquitin probes. Angew. Chem. Int. Ed. Engl. 59, 13496–13501 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Liu, Y. J. et al. Degradation of the separase-cleaved Rec8, a meiotic cohesin subunit, by the N-end rule pathway. J. Biol. Chem. 291, 7426–7438 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Degroot, R. J., Rumenapf, T., Kuhn, R. J., Strauss, E. G. & Strauss, J. H. Sindbis virus-RNA polymerase is degraded by the N-end rule pathway. Proc. Natl Acad. Sci. USA 88, 8967–8971 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Szoradi, T. et al. SHRED is a regulatory cascade that reprograms Ubr1 substrate specificity for enhanced protein quality control during stress. Mol. Cell 70, 1025–1037 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Streich, F. C., Jr & Lima, C. D. Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 536, 304–308 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Xia, Z. et al. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J. Biol. Chem. 283, 24011–24028 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Pan, M. et al. Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K27-linked ubiquitin chains. Angew. Chem. Int. Ed. Engl. 58, 2627–2631 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Pan, M. et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc. 138, 7429–7435 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Qu, Q. et al. A highly efficient synthesis of polyubiquitin chains. Adv. Sci. 5, 1800234 (2018).


    Google Scholar
     

  • 36.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    PubMed 

    Google Scholar
     

  • 38.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Pfab, J., Phan, N. M. & Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl Acad. Sci. USA 118, e2017525118 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta. Crystallogr. D 60, 2126–2132 (2004).

    PubMed 

    Google Scholar
     

  • 42.

    Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519–530 (2018).

    CAS 

    Google Scholar
     

  • 43.

    Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Holm, L. DALI and the persistence of protein shape. Protein Sci. 29, 128–140 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link