May 19, 2024
Structure and function of the RAD51B–RAD51C–RAD51D–XRCC2 tumour suppressor – Nature

Structure and function of the RAD51B–RAD51C–RAD51D–XRCC2 tumour suppressor – Nature

  • Venkitaraman, A. R. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science 343, 1470–1475 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Golmard, L. et al. Germline mutation in the RAD51B gene confers predisposition to breast cancer. BMC Cancer 13, 484 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, H. et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J. Clin. Oncol. 33, 2901–2907 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meindl, A. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat. Genet. 42, 410–414 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelttari, L. M. et al. RAD51C is a susceptibility gene for ovarian cancer. Hum. Mol. Genet. 20, 3278–3288 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loveday, C. et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 43, 879–882 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, R. et al. Homologous recombination-deficient mutation cluster in tumor suppressor RAD51C identified by comprehensive analysis of cancer variants. Proc. Natl Acad. Sci. USA 119, e2202727119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, D. J. et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am. J. Hum. Genet. 90, 734–739 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharya, D. et al. RAD51 paralogs: Expanding roles in replication stress responses and repair. Curr. Op. Pharmacol. 67, 102313 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bonilla, B., Hengel, S. R., Grundy, M. K. & Bernstein, K. A. RAD51 gene family structure and function. Annu. Rev. Genet. 54, 25–46 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. Y. et al. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J. Med. Genet. 53, 672–680 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaz, F. et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat. Genet. 42, 406–409 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamseldin, H. E., Elfaki, M. & Alkuraya, F. S. Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J. Med. Genet. 49, 184–186 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berti, M. et al. Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nat. Commun. 11, 3531 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcin, E. B. et al. Differential requirements for the RAD51 paralogs in genome repair and maintenance in human cells. PLoS Genet. 15, e1008355 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Z. G., Kong, H. Z., Nei, M. & Ma, H. Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer. Proc. Natl Acad. Sci. USA 103, 10328–10333 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumann, P., Benson, F. E. & West, S. C. Human RAD51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757–766 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benson, F. E., Stasiak, A. & West, S. C. Purification and characterisation of the human RAD51 protein, an analogue of E. coli RecA. EMBO J. 13, 5764–5771 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, P. & Robberson, D. L. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82, 453–461 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat. Struct. Mol. Biol. 24, 40–46 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. Y. et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349, 977–981 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. C., Yang, H. J. & Pavletich, N. P. Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453, 489–494 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Short, J. M. et al. High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy. Nucl. Acids Res. 44, 9017–9030 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. L. et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl Acad. Sci. USA 95, 5287–5292 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, A. A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. J. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1–ssDNA structure. Science 297, 1837–1848 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 420, 287–293 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen, R. B., Carreira, A. & Kowalczykowski, S. C. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678–683 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorslund, T. et al. The breast cancer tumour suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat. Struct. Mol. Biol. 17, 1263–1265 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Esashi, F., Galkin, V. E., Yu, X., Egelman, E. H. & West, S. C. Stabilisation of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat. Struct. Mol. Biol. 14, 468–474 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahid, T. et al. Structure and mechanism of action of the BRCA2 breast cancer tumour suppressor. Nature Struct. Mol. Biol. 21, 962–968 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xia, B. et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell 22, 719–729 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, F. et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr. Biol. 19, 524–529 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buisson, R. et al. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 17, 1247–1254 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masson, J.-Y. et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev. 15, 3296–3307 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479, 245–248 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belan, O. et al. Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol. Cell 81, 1058–1073 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, U. et al. The Rad51 paralog complex Rad55–Rad57 acts as a molecular chaperone during homologous recombination. Mol. Cell 81, 1043–1057 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amunugama, R. et al. RAD51 protein ATP cap regulates nucleoprotein filament stability. J. Biol. Chem. 287, 8724–8736 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, K. A., Sawicka, D., Barsky, D. & Albala, J. S. Domain mapping of the RAD51 paralog protein complexes. Nucl. Acids Res. 32, 169–178 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H., Zhou, C., Dhar, A. & Pavletich, N. P. Mechanism of strand exchange from RecA–DNA synaptic and D-loop structures. Nature 586, 801–806 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucl. Acids Res. 46, D1062–D1067 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacabanne, D. et al. ATP analogues for structural investigations: Case studies of a DnaB helicase and an ABC transporter. Molecules 25, 5268 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at BioxRiv https://doi.org/10.1101/2021.10.04.463034 (2023).

  • Anand, R. et al. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature 601, 268–273 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hegner, M., Smith, S. B. & Bustamante, C. Polymerization and mechanical properties of single RecA–DNA filaments. Proc. Natl Acad. Sci. USA 96, 10109–10114 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumann, P. & West, S. C. The human RAD51 protein: polarity of strand transfer and stimulation by hRP-A. EMBO J. 16, 5198–5206 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanyam, S., Ismail, M., Bhattacharya, I. & Spies, M. Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics. Proc. Natl Acad. Sci. USA 113, 6045–6054 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sano, K., Maeda, K., Oki, M. & Maeda, Y. Enhancement of protein expression in insect cells by a lobster tropomyosin cDNA leader sequence. FEBS Lett. 532, 143–146 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc. Natl Acad. Sci. USA 113, 2564–2569 (2016).

    Article 

    Google Scholar
     

  • Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hitchman, R. B., Siaterli, E. A., Nixon, C. P. & King, L. A. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles. Biotechnol. Bioeng. 96, 810–814 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theile, C. S. et al. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1800–1807 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Tarsounas, M., O’Regan, P. & West, S. C. Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J. Biol. Chem. 282, 1973–1979 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, J. C. et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem. 77, 2187–2200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucl. Acids Res. 42, W320–W324 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. PremPS: predicting the impact of missense mutations on protein stability. PLoS Comput. Biol. 16, e1008543 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laskowski, R. A., Jablonska, J., Pravda, L., Varekova, R. S. & Thornton, J. M. PDBsum: Structural summaries of PDB entries. Protein Sci. 27, 129–134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, H. N. & West, S. C. Generation of double Holliday junctiom DNAs and their dissolution/resolution within a chromatin context. Proc. Natl Acad. Sci. USA 119, e2123420119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J 478, 4169–4185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link