May 4, 2024

Structure, function and pharmacology of human itch receptor complexes – Nature

  • 1.

    Bader, M., Alenina, N., Andrade-Navarro, M. A. & Santos, R. A. MAS and its related G protein-coupled receptors, Mrgprs. Pharmacol. Rev. 66, 1080–1105 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Meixiong, J. & Dong, X. Mas-related G protein-coupled receptors and the biology of itch sensation. Ann. Rev. Genet. 51, 103–121 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Solinski, H. J., Gudermann, T. & Breit, A. Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol. Rev. 66, 570–597 (2014).

    PubMed 

    Google Scholar
     

  • 4.

    McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Wedi, B., Gehring, M. & Kapp, A. The pseudoallergen receptor MRGPRX2 on peripheral blood basophils and eosinophils: expression and function. Allergy 75, 2229–2242 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Yang, S. et al. Adaptive evolution of MRGX2, a human sensory neuron specific gene involved in nociception. Gene 352, 30–35 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Meixiong, J. et al. Activation of mast-cell-expressed Mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50, 1163–1171 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Green, D. P., Limjunyawong, N., Gour, N., Pundir, P. & Dong, X. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101, 412–420 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Porebski, G., Kwiecien, K., Pawica, M. & Kwitniewski, M. Mas-related G protein-coupled receptor-X2 (MRGPRX2) in drug hypersensitivity reactions. Front. Immunol. 9, 3027 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Azimi, E., Reddy, V. B. & Lerner, E. A. MRGPRX2, atopic dermatitis and red man syndrome. Itch 2, e5 (2017).

    PubMed 

    Google Scholar
     

  • 11.

    Subramanian, H., Gupta, K. & Ali, H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allergy Clin. Immunol. 138, 700–710 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Grimes, J. et al. MrgX2 is a promiscuous receptor for basic peptides causing mast cell pseudo-allergic and anaphylactoid reactions. Pharmacol. Res. Perspect. 7, e00547 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Liang, Y. L. et al. Dominant negative G proteins enhance formation and purification of agonist-GPCR-G protein complexes for structure determination. ACS Pharmacol. Transl. Sci. 1, 12–20 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Lansu, K. et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat. Chem. Biol. 13, 529–536 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Kamohara, M. et al. Identification of MrgX2 as a human G-protein-coupled receptor for proadrenomedullin N-terminal peptides. Biochem. Biophys. Res. Commun. 330, 1146–1152 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Krishna Kumar, K. et al. Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176, 448–458 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Liu, X. et al. Structural insights into the process of GPCR-G protein complex formation. Cell 177, 1243–1251 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Ping, Y. Q. et al. Structures of the glucocorticoid-bound adhesion receptor GPR97-Go complex. Nature 589, 620–626 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Bokoch, M. P. et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–112 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Alkanfari, I., Gupta, K., Jahan, T. & Ali, H. Naturally occurring missense MRGPRX2 variants display loss of function phenotype for mast cell degranulation in response to substance P, hemokinin-1, human beta-defensin-3, and icatibant. J. Immunol. 201, 343–349 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Gonzalez-Rey, E., Chorny, A., Robledo, G. & Delgado, M. Cortistatin, a new antiinflammatory peptide with therapeutic effect on lethal endotoxemia. J. Exp. Med. 203, 563–571 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Li, R. et al. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase. J. Neurochem. 128, 315–329 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Ogasawara, H., Furuno, M., Edamura, K. & Noguchi, M. Novel MRGPRX2 antagonists inhibit IgE-independent activation of human umbilical cord blood-derived mast cells. J. Leukocyte Biol. 106, 1069–1077 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).


    Google Scholar
     

  • 26.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Bianco, G., Forli, S., Goodsell, D. S. & Olson, A. J. Covalent docking using autodock: two-point attractor and flexible side chain methods. Protein Sci. 25, 295–301 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Metropolis, N. & Ulam, S. The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 39.

    Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).


    Google Scholar
     

  • 40.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    CAS 

    Google Scholar
     

  • 41.

    Kumari, R., Kumar, R., Open Source Drug Discovery, C. & Lynn, A. g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951–1962 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A. & Case, D. A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate—DNA helices. J. Am. Chem. Soc. 120, 9401–9409 (1998).

    CAS 

    Google Scholar
     

  • 43.

    Yang, F. et al. Structural basis of GPBAR activation and bile acid recognition. Nature 587, 499–504 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Li, T. et al. Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury. Nat. Commun. 9, 11 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link