May 2, 2024
Structured cerebellar connectivity supports resilient pattern separation – Nature

Structured cerebellar connectivity supports resilient pattern separation – Nature

  • Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebner, T. J. & Pasalar, S. Cerebellum predicts the future motor state. Cerebellum 7, 583–588 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32, 413–434 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koziol, L. F. et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13, 151–177 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 16, 367–378 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Wagner, M. J. & Luo, L. Neocortex–cerebellum circuits for cognitive processing. Trends Neurosci. 43, 42–54 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cayco-Gajic, N. A. & Silver, R. A. Re-evaluating circuit mechanisms underlying pattern separation. Neuron 101, 584–602 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article 

    Google Scholar
     

  • Babadi, B. & Sompolinsky, H. Sparseness and expansion in sensory representations. Neuron 83, 1213–1226 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Billings, G., Piasini, E., Lőrincz, A., Nusser, Z. & Silver, R. A. Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron 83, 960–974 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cayco-Gajic, N. A., Clopath, C. & Silver, R. A. Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks. Nat. Commun. 8, 1116 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H. & Abbott, L. F. Optimal degrees of synaptic connectivity. Neuron 93, 1153–1164.e7 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eccles, J. C., Ito, M. & Szentagothai, J. The Cerebellum as a Neuronal Machine (Springer–Verlag, 1967).

  • Palay, S. L. & Chan-Palay, V. Cerebellar Cortex: Cytology and Organization (Springer–Verlag, 1974).

  • Liu, A. & Regehr, W. G. Normalization of input patterns in an associative network. J. Neurophysiol. 111, 544–551 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Walter, J. T. & Khodakhah, K. The advantages of linear information processing for cerebellar computation. Proc. Natl Acad. Sci. USA 106, 4471–4476 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohmae, S. & Medina, J. F. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat. Neurosci. 18, 1798–1803 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heffley, W. et al. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat. Neurosci. 21, 1431–1441 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanger, T. D., Yamashita, O. & Kawato, M. Expansion coding and computation in the cerebellum: 50 years after the Marr–Albus codon theory. J. Physiol. 598, 913–928 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y., Geddes, T. A., Yang, J. Y. H. & Yang, P. Ensemble deep learning in bioinformatics. Nat. Mach. Intell. 2, 500–508 (2020).

    Article 

    Google Scholar
     

  • Bell, C. C., Han, V. & Sawtell, N. B. Cerebellum-like structures and their implications for cerebellar function. Annu. Rev. Neurosci. 31, 1–24 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevens, C. F. What the fly’s nose tells the fly’s brain. Proc. Natl Acad. Sci. USA 112, 9460–9465 (2015).

  • Eichler, K. et al. The complete connectome of a learning and memory centre in an insect brain. Nature 548, 175–182 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Houston, C. M. et al. Exploring the significance of morphological diversity for cerebellar granule cell excitability. Sci. Rep. 7, 46147 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sultan, F. Distribution of mossy fibre rosettes in the cerebellum of cat and mice: evidence for a parasagittal organization at the single fibre level. Eur. J. Neurosci. 13, 2123–2130 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilmer, J. I. & Person, A. L. Morphological constraints on cerebellar granule cell combinatorial diversity. J. Neurosci. 37, 12153–12166 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knogler, L. D., Markov, D. A., Dragomir, E. I., Štih, V. & Portugues, R. Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Curr. Biol. 27, 1288–1302 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giovannucci, A. et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat. Neurosci. 20, 727–734 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heck, D. H., Thach, W. T. & Keating, J. G. On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement. Proc. Natl Acad. Sci. USA 104, 7658–7663 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Solages, C. et al. High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum. Neuron 58, 775–788 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wise, A. K., Cerminara, N. L., Marple-Horvat, D. E. & Apps, R. Mechanisms of synchronous activity in cerebellar Purkinje cells. J. Physiol. 588, 2373–2390 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, R. J. & Napper, R. M. A. Quantitatives studies on the mammalian cerebellum. Prog. Neurobiol. 36, 437–463 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Napper, R. M. & Harvey, R. J. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol. 274, 168–177 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isope, P. & Barbour, B. Properties of unitary granule cell→Purkinje cell synapses in adult rat cerebellar slices. J. Neurosci. 22, 9668–9678 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanore, F., Cayco-Gajic, N. A., Gurnani, H., Coyle, D. & Silver, R. A. Cerebellar granule cell axons support high-dimensional representations. Nat. Neurosci. 24, 1142–1150 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dittman, J. S., Kreitzer, A. C. & Regehr, W. G. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C.-C. et al. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2, e00400 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chabrol, F. P., Arenz, A., Wiechert, M. T., Margrie, T. W. & DiGregorio, D. A. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat. Neurosci. 18, 718–727 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, M. J. et al. Shared cortex–cerebellum dynamics in the execution and learning of a motor task. Cell 177, 669–682.e24 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuan, A. T. et al. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat. Neurosci. 23, 1637–1643 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zavitz, D., Amematsro, E. A., Borisyuk, A. & Caron, S. J. C. Connectivity patterns that shape olfactory representation in a mushroom body network model. Preprint at bioRxiv https://doi.org/10.1101/2021.02.10.430647 (2021).

  • Zheng, Z. et al. Structured sampling of olfactory input by the fly mushroom body. Curr. Biol. 32, 3334–3349.e6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, C. et al. Purkinje cells directly inhibit granule cells in specialized regions of the cerebellar cortex. Neuron 91, 1330–1341 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowan, M. J. M. et al. Graded control of climbing-fiber-mediated plasticity and learning by inhibition in the cerebellum. Neuron 99, 999–1015.e6 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature 598, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osorno, T. et al. Candelabrum cells are ubiquitous cerebellar cortex interneurons with specialized circuit properties. Nat. Neurosci. 25, 702–713 (2022).

  • Gao, Z. et al. A cortico-cerebellar loop for motor planning. Nature 563, 113–116 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, Y., Laserstein, P. & Helmstaedter, M. Large-volume en-bloc staining for electron microscopy-based connectomics. Nat. Commun. 6, 7923 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774.e18 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deerinck, T. J., Bushong, E. A., Thor, A. & Ellisman, M. H. NCMIR methods for 3D EM: a new protocol for preparation of biological specimens for serial block face scanning electron microscopy. Microscopy 1, 6–8 (2010).

  • Saalfeld, S., Cardona, A., Hartenstein, V. & Tomancak, P. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25, 1984–1986 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funke, J. et al. Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1669–1680 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sheridan, A. et al. Local shape descriptors for neuron segmentation. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.427039 (2021).

  • Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, K., Zung, J., Li, P., Jain, V. & Seung, H. S. Superhuman accuracy on the SNEMI3D connectomics challenge. Preprint at https://doi.org/10.48550/arXiv.1706.00120 (2017).

  • Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, T., Malin-Mayor, C., Patton, W. & Funke, J. Daisy: block-wise task dependencies for luigi. https://github.com/funkelab/daisy (2022).

  • Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nat. Methods 18, 771–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boergens, K. M. et al. webKnossos: efficient online 3D data annotation for connectomics. Nat. Methods 14, 691–694 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. of the Second International Conference on Knowledge Discovery and Data Mining 226–231 (AAAI Press, 1996).

  • Hamming, R. W. Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Dhar, M., Hantman, A. W. & Nishiyama, H. Developmental pattern and structural factors of dendritic survival in cerebellar granule cells in vivo. Sci Rep. 8, 17561 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyrrell, T. & Willshaw, D. Cerebellar cortex: its simulation and the relevance of Marr’s theory. Philos. Trans. R. Soc. Lond. B 336, 239–257 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gundappa-Sulur, G., De Schutter, E. & Bower, J. M. Ascending granule cell axon: an important component of cerebellar cortical circuitry. J. Comp. Neurol. 408, 580–596 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C.-M., Wang, L. & Huang, R. H. Cerebellar granule cell: ascending axon and parallel fiber. Eur. J. Neurosci. 23, 1731–1737 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Walter, J. T., Dizon, M.-J. & Khodakhah, K. The functional equivalence of ascending and parallel fiber inputs in cerebellar computation. J. Neurosci. 29, 8462–8473 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradbury, J. et al. JAX: composable transformations of Python+NumPy programs. https://github.com/google/jax (2018).

  • Hennigan, T., Cai, T., Norman, T. & Babuschkin, I. Haiku: Sonnet for JAX. https://github.com/deepmind/dm-haiku (2020).

  • Babuschkin, I. et al. The DeepMind JAX Ecosystem. http://github.com/deepmind (2020).

  • Ito, M. The molecular organization of cerebellar long-term depression. Nat. Rev. Neurosci. 3, 896–902 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link