May 18, 2024

Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1 – Nature

  • 1.

    Gurevich, E. V., Tesmer, J. J., Mushegian, A. & Gurevich, V. V. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol. Ther. 133, 40–69 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Cato, M. C. et al. The open question of how GPCRs interact with GPCR kinases (GRKs). Biomolecules 11, 447 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Komolov, K. E. et al. Structural and functional analysis of a β2-adrenergic receptor complex with GRK5. Cell 169, 407–421.e16 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    He, Y. et al. Molecular assembly of rhodopsin with G protein-coupled receptor kinases. Cell Res. 27, 728–747 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Beautrait, A. et al. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. J. Biol. Chem. 289, 25262–25275 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Boguth, C. A., Singh, P., Huang, C. C. & Tesmer, J. J. Molecular basis for activation of G protein-coupled receptor kinases. EMBO J. 29, 3249–3259 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Noble, B., Kallal, L. A., Pausch, M. H. & Benovic, J. L. Development of a yeast bioassay to characterize G protein-coupled receptor kinases. Identification of an NH2-terminal region essential for receptor phosphorylation. J. Biol. Chem. 278, 47466–47476 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Palczewski, K., Buczyłko, J., Lebioda, L., Crabb, J. W. & Polans, A. S. Identification of the N-terminal region in rhodopsin kinase involved in its interaction with rhodopsin. J. Biol. Chem. 268, 6004–6013 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Lefkowitz, R. J. Seven transmembrane receptors: something old, something new. Acta Physiol. (Oxf.) 190, 9–19 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Brinks, H. & Koch, W. J. Targeting G protein-coupled receptor kinases (GRKs) in heart failure. Drug Discov. Today Dis. Mech. 7, e129–e134 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Nogués, L. et al. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin. Cancer Biol. 48, 78–90 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 12.

    Kannan, N., Haste, N., Taylor, S. S. & Neuwald, A. F. The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc. Natl Acad. Sci. USA 104, 1272–1277 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Lodowski, D. T., Pitcher, J. A., Capel, W. D., Lefkowitz, R. J. & Tesmer, J. J. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gβγ. Science 300, 1256–1262 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Gao, Y. et al. Structures of the rhodopsin-transducin complex: insights into G-protein activation. Mol. Cell 75, 781–790.e3 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Huang, W. et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579, 303–308 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Staus, D. P. et al. Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Kato, H. E. et al. Conformational transitions of a neurotensin receptor 1–Gi1 complex. Nature 572, 80–85 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Pulvermüller, A., Palczewski, K. & Hofmann, K. P. Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation. Biochemistry 32, 14082–14088 (1993).

    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Kühn, H. & Dreyer, W. J. Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett. 20, 1–6 (1972).

    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Kühn, H., Cook, J. H. & Dreyer, W. J. Phosphorylation of rhodopsin in bovine photoreceptor membranes. A dark reaction after illumination. Biochemistry 12, 2495–2502 (1973).

    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Clifford-Nunn, B., Showalter, H. D. & Andrews, P. C. Quaternary diamines as mass spectrometry cleavable crosslinkers for protein interactions. J. Am. Soc. Mass Spectrom. 23, 201–212 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Hagen, S. E. et al. Synthesis of CID-cleavable protein crosslinking agents containing quaternary amines for structural mass spectrometry. Org. Biomol. Chem. 16, 8245–8248 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Bayburt, T. H. et al. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 286, 1420–1428 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Palczewski, K., Kahn, N. & Hargrave, P. A. Nucleoside inhibitors of rhodopsin kinase. Biochemistry 29, 6276–6282 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Waldschmidt, H. V. et al. Structure-based design, synthesis, and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. J. Med. Chem. 59, 3793–3807 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Komolov, K. E. et al. Structure of a GRK5–calmodulin complex reveals molecular mechanism of GRK activation and substrate targeting. Mol. Cell 81, 323–339.e11 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Huang, C. C., Yoshino-Koh, K. & Tesmer, J. J. G. A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases. J. Biol. Chem. 284, 17206–17215 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Madhusudan, A., Akamine, P., Xuong, N. H. & Taylor, S. S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9, 273–277 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Yao, X. Q. et al. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. J. Biol. Chem. 292, 16032–16043 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Zhou, X. E. et al. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469.e13 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Pao, C. S., Barker, B. L. & Benovic, J. L. Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Biochemistry 48, 7325–7333 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Huang, C. C., Orban, T., Jastrzebska, B., Palczewski, K. & Tesmer, J. J. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain. Biochemistry 50, 1940–1949 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Jones Brunette, A. M., Sinha, A., David, L. & Farrens, D. L. Evidence that the rhodopsin kinase (GRK1) N-terminus and the transducin Gα C-terminus interact with the same “hydrophobic patch” on rhodopsin TM5. Biochemistry 55, 3123–3135 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Kelleher, D. J. & Johnson, G. L. Characterization of rhodopsin kinase purified from bovine rod outer segments. J. Biol. Chem. 265, 2632–2639 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Buczyłko, J., Gutmann, C. & Palczewski, K. Regulation of rhodopsin kinase by autophosphorylation. Proc. Natl Acad. Sci. USA 88, 2568–2572 (1991).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Kunapuli, P., Gurevich, V. V. & Benovic, J. L. Phospholipid-stimulated autophosphorylation activates the G protein-coupled receptor kinase GRK5. J. Biol. Chem. 269, 10209–10212 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Premont, R. T., Koch, W. J., Inglese, J. & Lefkowitz, R. J. Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J. Biol. Chem. 269, 6832–6841 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Ping, Y. Q. et al. Structures of the glucocorticoid-bound adhesion receptor GPR97-Go complex. Nature 589, 620–626 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Dhami, G. K. & Ferguson, S. S. Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol. Ther. 111, 260–271 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Dhami, G. K. et al. G Protein-coupled receptor kinase 2 regulator of G protein signaling homology domain binds to both metabotropic glutamate receptor 1a and Galphaq to attenuate signaling. J. Biol. Chem. 279, 16614–16620 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Iacovelli, L. et al. Regulation of group II metabotropic glutamate receptors by G protein-coupled receptor kinases: mGlu2 receptors are resistant to homologous desensitization. Mol. Pharmacol. 75, 991–1003 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Ohguro, H., Palczewski, K., Ericsson, L. H., Walsh, K. A. & Johnson, R. S. Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry 32, 5718–5724 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Yang, J. et al. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat. Struct. Biol. 9, 940–944 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Reiter, E., Ahn, S., Shukla, A. K. & Lefkowitz, R. J. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179–197 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 47.

    Nobles, K. N. et al. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Shoemaker, B. A., Portman, J. J. & Wolynes, P. G. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl Acad. Sci. USA 97, 8868–8873 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Singh, P., Wang, B., Maeda, T., Palczewski, K. & Tesmer, J. J. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J. Biol. Chem. 283, 14053–14062 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 51.

    Pitcher, J. A. et al. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem. 274, 34531–34534 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Yu, Q. M. et al. The amino terminus with a conserved glutamic acid of G protein-coupled receptor kinases is indispensable for their ability to phosphorylate photoactivated rhodopsin. J. Neurochem. 73, 1222–1227 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Sterne-Marr, R. et al. GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail. Biochemistry 48, 4285–4293 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 54.

    Komolov, K. E., Bhardwaj, A. & Benovic, J. L. Atomic structure of GRK5 reveals distinct structural features novel for G protein-coupled receptor kinases. J. Biol. Chem. 290, 20629–20647 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Lodowski, D. T. et al. The role of Gβγ and domain interfaces in the activation of G protein-coupled receptor kinase 2. Biochemistry 44, 6958–6970 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 56.

    Baameur, F. et al. Role for the regulator of G-protein signaling homology domain of G protein-coupled receptor kinases 5 and 6 in β2-adrenergic receptor and rhodopsin phosphorylation. Mol. Pharmacol. 77, 405–415 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Lodowski, D. T., Tesmer, V. M., Benovic, J. L. & Tesmer, J. J. The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs. J. Biol. Chem. 281, 16785–16793 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 58.

    Papermaster, D. S. Preparation of retinal rod outer segments. Methods Enzymol. 81, 48–52 (1982).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 59.

    Paduch, M. et al. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods 60, 3–14 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 60.

    Miller, K. R. et al. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS ONE 7, e43746 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 62.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 63.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 65.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Bouley, R. et al. Structural determinants influencing the potency and selectivity of indazole-paroxetine hybrid G protein-coupled receptor kinase 2 inhibitors. Mol. Pharmacol. 92, 707–717 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 69.

    Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J. & Penczek, P. A. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20, 237–247 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 70.

    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 71.

    Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 72.

    Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D 68, 1278–1289 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 73.

    Combe, C. W., Fischer, L. & Rappsilber, J. xiNET: cross-link network maps with residue resolution. Mol. Cell. Proteomics 14, 1137–1147 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link