April 27, 2024
Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ – Nature

Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ – Nature

  • Inda, M. E. & Lu, T. K. Microbes as biosensors. Annu. Rev. Microbiol. 74, 337–359 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. A threshold-based bioluminescence detector with a CMOS-integrated photodiode array in 65 nm for a multi-diagnostic ingestible capsule. IEEE J. Solid State Circuits 58, 838–851 (2023).

  • Bourgonje, A. R. et al. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol. Med. 26, 1034–1046 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-Y., Tsolis, R. M. & Bäumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Million, M. et al. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci. Rep. 6, 26051 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pribis, J. P. et al. Gamblers: an antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell 74, 785–800.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reese, A. T. et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 7, e35987 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivera-Chávez, F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19, 443–454 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumitrescu, L. et al. Oxidative stress and the microbiota–gut–brain axis. Oxid. Med. Cell. Longev. 2018, 2406594 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yardeni, T. et al. Host mitochondria influence gut microbiome diversity: A role for ROS. Sci. Signal. 12, eaaw3159 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jose, S., Bhalla, P. & Suraishkumar, G. K. Oxidative stress decreases the redox ratio and folate content in the gut microbe, Enterococcus durans (MTCC 3031). Sci. Rep. 8, 12138 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328.e13 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Million, M. & Raoult, D. Linking gut redox to human microbiome. Hum. Microbiome J. 10, 27–32 (2018).

    Article 

    Google Scholar
     

  • Rivera-Chávez, F. & Bäumler, A. J. The pyromaniac inside you: Salmonella metabolism in the host gut. Annu. Rev. Microbiol. 69, 31–48 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Article 

    Google Scholar
     

  • Steiger, C. et al. Dynamic monitoring of systemic biomarkers with gastric sensors. Adv. Sci. 8, 2102861 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Archer, E. J., Robinson, A. B. & Süel, G. M. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth. Biol. 1, 451–457 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubens, J. R., Selvaggio, G. & Lu, T. K. Synthetic mixed-signal computation in living cells. Nat. Commun. 7, 11658 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daeffler, K. N. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13, 923 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annese, V. et al. European evidence-based consensus: inflammatory bowel disease and malignancies. J. Crohns. Colitis 9, 945–965 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Amir, A. et al. Room-temperature, correcting for microbial blooms in fecal samples during shipping. mSystems 2, e00199–16 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raymond, F. et al. Culture-enriched human gut microbiomes reveal core and accessory resistance genes. Microbiome 7, 56 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, B., Zimmermann, M., Barry, N. A. & Goodman, A. L. Engineered regulatory systems modulate gene expression of human commensals in the gut. Cell 169, 547–558.e15 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swain, P. Wireless capsule endoscopy. Gut 52 (suppl. 4), 48–50 (2003).


    Google Scholar
     

  • van der Schaar, P. J. et al. A novel ingestible electronic drug delivery and monitoring device. Gastrointest. Endosc. 78, 520–528 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Din, M. O. et al. Interfacing gene circuits with microelectronics through engineered population dynamics. Sci. Adv. 6, eaaz8344 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bass, D. M., Prevo, M. & Waxman, D. S. Gastrointestinal safety of an extended-release, nondeformable, oral dosage form (OROS). Drug Saf. 25, 1021–1033 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bush, M., Ghosh, T., Tucker, N., Zhang, X. & Dixon, R. Transcriptional regulation by the dedicated nitric oxide sensor, NorR: a route towards NO detoxification. Biochem. Soc. Trans. 39, 289–293 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. J., Wang, B., Thompson, I. P. & Huang, W. E. Rational design and characterization of nitric oxide biosensors in E. coli Nissle 1917 and mini SimCells. ACS Synth. Biol. 10, 2566–2578 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceze, L., Nivala, J. & Strauss, K. Molecular digital data storage using DNA. Nat. Rev. Genet. 20, 456–466 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, P. L. et al. Paradoxical roles of different nitric oxide synthase isoforms in colonic injury. Am. J. Physiol. 286, 137–147 (2004).


    Google Scholar
     

  • Jiminez, J. A., Uwiera, T. C., Douglas Inglis, G. & Uwiera, R. R. E. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 7, 29 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strand-Amundsen, R. J. et al. Ischemia/reperfusion injury in porcine intestine—viability assessment. World J. Gastroenterol. 24, 2009–2023 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundberg, J. O. N., Lundberg, J. M., Alving, K. & Hellström, P. M. Greatly increased luminal nitric oxide in ulcerative colitis. Lancet 344, 1673–1674 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 31, 2010918 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, M. et al. In 2020 IEEE International Solid- State Circuits Conference 474–476 https://doi.org/10.1109/ISSCC19947.2020.9063083 (IEEE, 2020).

  • Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science. 368, 993–1001 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, H. et al. Autonomous push button-controlled rapid insulin release from a piezoelectrically activated subcutaneous cell implant. Sci. Adv. 8, 24 (2022).

    Article 

    Google Scholar
     

  • Harimoto, T. et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol. 40, 1259–1269 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Biofilm-inspired encapsulation of probiotics for the treatment of complex infections. Adv. Mater. 30, e1803925 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12, 5995–6005 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Z., Wang, X., Pang, Y., Cheng, S. & Liu, J. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat. Commun. 10, 5783 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Q. et al. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15, 2732–2739 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vujkovic-cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, Y., Selby, N. & Adib, F. Minding the billions: ultra-wideband localization for deployed RFID tags. In Proc. MobiCom ’17 https://doi.org/10.1145/3117811.3117833 (Association for Computing Machinery, 2017).

  • Siuti, P., Yazbek, J. & Lu, T. K. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31, 448–452 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inda, M. E., Mimee, M. & Lu, T. K. Cell-based biosensors for immunology, inflammation, and allergy. J. Allerg. Clin. Immunol. 144, 645–647 (2019).

    Article 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinders, C. I. et al. Rectal mucosal nitric oxide in differentiation of inflammatory bowel disease and irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 3, 777–783 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link