May 5, 2024
Superconducting-qubit readout via low-backaction electro-optic transduction – Nature

Superconducting-qubit readout via low-backaction electro-optic transduction – Nature

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, J. et al. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms. Phys. Rev. Lett. 120, 093201 (2018).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanome- chanical interface. Nat. Commun. 11, 4460 (2020).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stockill, R. et al. Ultra-low-noise microwave to optics conversion in gallium phosphide. Preprint at https://arxiv.org/abs/2107.04433 (2021).

  • Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barends, R. et al. Minimizing quasiparticle generation from stray infrared light in supercon-ducting quantum circuits. Appl. Phys. Lett. 99, 113507 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Campbell, E. T. & Benjamin, S. C. Measurement-based entanglement under conditions of extreme photon loss. Phys. Rev. Lett. 101, 130502 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    MathSciNet 
    CAS 
    MATH 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhong, C. et al. Proposal for heralded generation and detection of entangled microwave–optical-photon pairs. Phys. Rev. Lett. 124, 010511 (2020).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kurpiers, P. et al. Quantum communication with time-bin encoded microwave photons. Phys. Rev. Appl. 12, 044067 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Hatridge, M. et al. Quantum back-action of an individual variable-strength measurement. Science 339, 178–181 (2013).

    MathSciNet 
    CAS 
    MATH 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Inagaki, T. et al. Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591, 575–579 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Youssefi, A. et al. A cryogenic electro-optic interconnect for superconducting devices. Nat. Electron. 4, 326–332 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chakram, S. et al. Seamless high-Q microwave cavities for multimode circuit quantum elec-trodynamics. Phys. Rev. Lett. 127, 107701 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bultink, C. C. et al. General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. Appl. Phys. Lett. 112, 092601 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Clerk, A. A. et al. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    MathSciNet 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • Brubaker, B. M. et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer. Preprint at https://arxiv.org/abs/2112.13429 (2021).

  • Blais, A. et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gambetta, J. M. et al. Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement. Phys. Rev. A 76, 012325 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Clerk, A. A. & Utami, D. W. Using a qubit to measure photon-number statistics of a driven thermal oscillator. Phys. Rev. A 75, 042302 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mallet, F. et al. Quantum state tomography of an itinerant squeezed microwave field. Phys. Rev. Lett. 106, 220502 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rosenthal, E. I. et al. Efficient and low-backaction quantum measurement using a chip-scale detector. Phys. Rev. Lett. 126, 090503 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Touzard, S. et al. Gated conditional displacement readout of superconducting qubits. Phys. Rev. Lett. 122, 080502 (2019).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gambetta, J. M. et al. Qubit-photon interactions in a cavity: measurement-induced dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Place, A. P. M. et al. New material platform for superconducting transmon qubits with co-herence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolan, G. J. Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337–339 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Houck, A. A. et al. Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tamura, Y. et al. The first 0.14-db/km loss optical fiber and its impact on submarine transmission. J. Lightwave Technol. 36, 44–49 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Source link