May 6, 2024
Temperature inhomogeneities cause the abundance discrepancy in H ii regions – Nature

Temperature inhomogeneities cause the abundance discrepancy in H ii regions – Nature

  • Maiolino, R. & Mannucci, F. De Re Metallica: the cosmic chemical evolution of galaxies. Astron. Astrophys. Review 27, 3 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kewley, L. J., Nicholls, D. C. & Sutherland, R. S. Understanding galaxy evolution through emission lines. Annu. Rev. Astron. Astrophys. 57, 511–570 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wyse, A. B. The spectra of ten gaseous nebulae. Astrophys. J. 95, 356 (1942).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferland, G. J. Quantitative spectroscopy of photoionized clouds. Annu. Rev. Astron. Astrophys. 41, 517–554 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peimbert, M., Peimbert, A. & Delgado-Inglada, G. Nebular spectroscopy: a guide on H ii regions and planetary nebulae. PASP 129, 082001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Peimbert, M. Temperature determinations of H ii regions. Astrophys. J. 150, 825 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arellano-Córdova, K. Z. et al. A first look at the abundance pattern—O/H, C/O, and Ne/O—in z > 7 galaxies with JWST/NIRSpec. Astrophys. J. Lett. 940, L23 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Curti, M. et al. The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z ~ 8. Mon. Not. R. Astron. Soc. 518, 425–438 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Katz, H. et al. First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O iii] λ4363/[O iii] λ5007. Mon. Not. R. Astron. Soc. 518, 592–603 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Peimbert, M. & Costero, R. Chemical abundances in Galactic H ii regions. Bol. Obs. Tonantzintla Tacubaya 5, 3–22 (1969).

    ADS 

    Google Scholar
     

  • Peimbert, A. & Peimbert, M. Densities, temperatures, pressures, and abundances derived from O ii recombination lines in H ii regions and their Implications. Astrophys. J. 778, 89 (2013).

    Article 
    ADS 

    Google Scholar
     

  • García-Rojas, J. & Esteban, C. On the abundance discrepancy problem in H ii regions. Astrophys. J. 670, 457–470 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Méndez-Delgado, J. E. et al. Gradients of chemical abundances in the Milky Way from H ii regions: distances derived from Gaia EDR3 parallaxes and temperature inhomogeneities. Mon. Not. R. Astron. Soc. 510, 4436–4455 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Esteban, C., Peimbert, M., Torres-Peimbert, S. & Rodríguez, M. Optical recombination lines of heavy elements in giant extragalactic H ii regions. Astrophys. J. 581, 241–257 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peimbert, A., Peña-Guerrero, M. A. & Peimbert, M. A classification of H ii regions based on oxygen and helium lines: the cases of TOL 2146-391 and TOL 0357-3915. Astrophys. J. 753, 39 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Toribio San Cipriano, L. et al. Carbon and oxygen in H ii regions of the Magellanic Clouds: abundance discrepancy and chemical evolution. Mon. Not. R. Astron. Soc. 467, 3759–3774 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Stasińska, G. The interest of high spatial resolution observations of presumed metal-rich H ii regions. Astron. Astrophys. 85, 359–361 (1980).

    ADS 

    Google Scholar
     

  • Garnett, D. R. Electron temperature variations and the measurement of nebular abundances. Astron. J. 103, 1330 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pérez, E. Temperature fluctuations and starburst evolution. Mon. Not. R. Astron. Soc. 290, 465–470 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Ercolano, B., Bastian, N. & Stasińska, G. The effects of spatially distributed ionization sources on the temperature structure of H ii regions. Mon. Not. R. Astron. Soc. 379, 945–955 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esteban, C., Mesa-Delgado, A., Morisset, C. & García-Rojas, J. The chemical composition of Galactic ring nebulae around massive stars. Mon. Not. R. Astron. Soc. 460, 4038–4062 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walborn, N. R. The space distribution of the O stars in the solar neighborhood. Astron. J. 78, 1067–1083 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Peimbert, A. The chemical composition of the 30 Doradus Nebula derived from Very Large Telescope echelle spectrophotometry. Astrophys. J. 584, 735–750 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • López-Sánchez, Á. R., Esteban, C., García-Rojas, J., Peimbert, M. & Rodríguez, M. The localized chemical pollution in NGC 5253 revisited: results from deep echelle spectrophotometry. Astrophys. J. 656, 168–185 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Esteban, C. et al. Keck HIRES spectroscopy of extragalactic H ii regions: C and O abundances from recombination lines. Astrophys. J. 700, 654–678 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esteban, C. et al. Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution. Mon. Not. R. Astron. Soc. 443, 624–647 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Toribio San Cipriano, L., García-Rojas, J., Esteban, C., Bresolin, F. & Peimbert, M. Carbon and oxygen abundance gradients in NGC 300 and M33 from optical recombination lines. Mon. Not. R. Astron. Soc. 458, 1866–1890 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esteban, C., Bresolin, F., García-Rojas, J. & Toribio San Cipriano, L. Carbon, nitrogen, and oxygen abundance gradients in M101 and M31. Mon. Not. R. Astron. Soc. 491, 2137–2155 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Domínguez-Guzmán, G., Rodríguez, M., García-Rojas, J., Esteban, C. & Toribio San Cipriano, L. The homogeneity of chemical abundances in H ii regions of the Magellanic Clouds. Mon. Not. R. Astron. Soc. 517, 4497–4514 (2022).

    Article 
    ADS 

    Google Scholar
     

  • García-Rojas, J. et al. Chemical abundances of the Galactic H ii region NGC 3576 derived from Very Large Telescope echelle spectrophotometry. Astrophys. J. Supplement. 153, 501–522 (2004).

    Article 
    ADS 

    Google Scholar
     

  • García-Rojas, J. et al. Deep echelle spectrophotometry of S 311, a Galactic H ii region located outside the solar circle. Mon. Not. R. Astron. Soc. 362, 301–312 (2005).

    Article 
    ADS 

    Google Scholar
     

  • García-Rojas, J. et al. Faint emission lines in the Galactic H ii regions M16, M20 and NGC 3603. Mon. Not. R. Astron. Soc. 368, 253–279 (2006).

    Article 
    ADS 

    Google Scholar
     

  • García-Rojas, J. et al. The chemical composition of the Galactic H ii regions M8 and M17. A revision based on deep VLT echelle spectrophotometry. Rev. Mex. Astron. Astrofis. 43, 3–31 (2007).

    ADS 

    Google Scholar
     

  • Esteban, C., Fang, X., García-Rojas, J. & Toribio San Cipriano, L. The radial abundance gradient of oxygen towards the Galactic anti-centre. Mon. Not. R. Astron. Soc. 471, 987–1004 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esteban, C. et al. A reappraisal of the chemical composition of the Orion Nebula based on Very Large Telescope echelle spectrophotometry. Mon. Not. R. Astron. Soc. 355, 229–247 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mesa-Delgado, A. et al. Properties of the ionized gas in HH 202 – II. Results from echelle spectrophotometry with Ultraviolet Visual Echelle Spectrograph. Mon. Not. R. Astron. Soc. 395, 855–876 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Delgado-Inglada, G., Mesa-Delgado, A., García-Rojas, J., Rodríguez, M. & Esteban, C. The Fe/Ni ratio in ionized nebulae: clues on dust depletion patterns. Mon. Not. R. Astron. Soc. 456, 3855–3865 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Méndez-Delgado, J. E. et al. Photoionized Herbig-Haro objects in the Orion Nebula through deep high-spectral resolution spectroscopy – I. HH 529 II and III. Mon. Not. R. Astron. Soc. 502, 1703–1739 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Méndez-Delgado, J. E. et al. Photoionized Herbig-Haro objects in the Orion Nebula through deep high spectral resolution spectroscopy. II. HH 204. Astrophys. J. 918, 27 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Méndez-Delgado, J. E., Esteban, C., García-Rojas, J. & Henney, W. J. Photoionized Herbig-Haro objects in the Orion Nebula through deep high-spectral resolution spectroscopy – III. HH 514. Mon. Not. R. Astron. Soc. 514, 744–761 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Luridiana, V., Morisset, C. & Shaw, R. A. PyNeb: a new tool for analyzing emission lines. I. Code description and validation of results. Astron. Astrophys. 573, A42 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Storey, P. J. & Hummer, D. G. Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8. Mon. Not. R. Astron. Soc. 272, 41–48 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Storey, P. J., Sochi, T. & Bastin, R. Recombination coefficients for O ii lines in nebular conditions. Mon. Not. R. Astron. Soc. 470, 379–389 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Froese Fischer, C. & Tachiev, G. Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences. At. Data Nucl. Data Tables 87, 1–184 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wiese, W. L., Fuhr, J. R. & Deters, T. M. Atomic transition probabilities of carbon, nitrogen, and oxygen: a critical data compilation. J. Phys. Chem. Ref. Data https://srd.nist.gov/JPCRD/jpcrdM7.pdf (1996).

  • Storey, P. J. & Zeippen, C. J. Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases. Mon. Not. R. Astron. Soc. 312, 813–816 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irimia, A. & Froese Fischer, C. Breit Pauli oscillator strengths, lifetimes and Einstein A coefficients in singly ionized sulphur. Phys. Scr. 71, 172–184 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fritzsche, S., Fricke, B., Geschke, D., Heitmann, A. & Sienkiewicz, J. E. Forbidden transitions in the ground-state configuration of low-Z phosphorus-like ions. Astrophys. J. 518, 994–1001 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mendoza, C. Recent advances in atomic calculations and experiments of interest in the study of planetary nebulae. In Planetary Nebulae. IAU Symposium 103 (ed. Flower, D. R.) 143–172 (Reidel Publishing, 1983).

  • Kaufman, V. & Sugar, J. Forbidden lines in ns2npk ground configurations and nsnp excited configurations of beryllium through molybdenum atoms and ions. J. Phys. Chem. Ref. Data 15, 321–426 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mendoza, C. & Zeippen, C. J. Transition probabilities for forbidden lines in the 3p3 configuration. Mon. Not. R. Astron. Soc. 198, 127–139 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Quinet, P. Transition probabilities for forbidden lines of Fe iii. Astron. Astrophys. Suppl. Ser. 116, 573–578 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kisielius, R., Storey, P. J., Ferland, G. J. & Keenan, F. P. Electron-impact excitation of O ii fine-structure levels. Mon. Not. R. Astron. Soc. 397, 903–912 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Storey, P. J., Sochi, T. & Badnell, N. R. Collision strengths for nebular [O iii] optical and infrared lines. Mon. Not. R. Astron. Soc. 441, 3028–3039 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tayal, S. S. Electron excitation collision strengths for singly ionized nitrogen. Astrophys. J. Suppl. 195, 12 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Tayal, S. S. & Zatsarinny, O. Breit-Pauli transition probabilities and electron excitation collision strengths for singly ionized sulfur. Astrophys. J. Suppl. 188, 32–45 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Butler, K. & Zeippen, C. J. Effective collision strengths for fine-structure forbidden transitions in the 3p3 configuration of Cl iii. Astron. Astrophys. 208, 337–344 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Galavis, M. E., Mendoza, C. & Zeippen, C. J. Atomic data from the IRON Project. X. Effective collision strengths for infrared transitions in silicon- and sulphur-like ions. Astron. Astrophys. Suppl. Ser. 111, 347 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Ramsbottom, C. A. & Bell, K. L. Effective collision strengths for electron-impact excitation of triphy ionized argon. At. Data Nucl. Data Tables 66, 65 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, H. Atomic data from the Iron Project. XVIII. Electron impact excitation collision strengths and rate coefficients for Fe iii. Astron. Astrophys. Suppl. Ser. 119, 523–528 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Torres-Peimbert, S., Peimbert, M. & Peña, M. Planetary nebulae with a high degree of ionization: NGC 2242 and NGC 4361. Astron. Astrophys. 233, 540 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y., Ercolano, B. & Liu, X. W. Temperature fluctuations in H ii regions: t2 for the two-phase model. Astron. Astrophys. 464, 631–634 (2007).

  • Nicholls, D. C., Dopita, M. A. & Sutherland, R. S. Resolving the electron temperature discrepancies in H ii regions and planetary nebulae: κ-distributed electrons. Astrophys. J. 752, 148 (2012).

  • Ferland, G. J., Henney, W. J., O’Dell, C. R. & Peimbert, M. The abundance discrepancy factor and t2 in nebulae: are non-thermal electrons the culprits? Rev. Mex. Astron. Astrofis. 52, 261 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Rodríguez, M. & García-Rojas, J. Temperature structure and metallicity in H ii regions. Astrophys. J. 708, 1551–1559 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Rubin, R. H. Noncollisional excitation of low-lying states in gaseous nebulae. Astrophys. J. 309, 334 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guseva, N. G. et al. VLT spectroscopy of low-metallicity emission-line galaxies: abundance patterns and abundance discrepancies. Astron. Astrophys. 529, A149 (2011).

    Article 

    Google Scholar
     

  • Peimbert, A., Peimbert, M. & Ruiz, M. T. Chemical composition of two H ii regions in NGC 6822 based on VLT spectroscopy. Astrophys. J. 634, 1056–1066 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peña-Guerrero, M. A., Peimbert, A., Peimbert, M. & Ruiz, M. T. Analysis of two Small Magellanic Cloud H ii regions considering thermal inhomogeneities: implications for the determinations of extragalactic chemical abundances. Astrophys. J. 746, 115 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Valerdi, M., Peimbert, A., Peimbert, M. & Sixtos, A. Determination of the primordial helium abundance based on NGC 346, an H ii region of the Small Magellanic Cloud. Astrophys. J. 876, 98 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peimbert, M., Peimbert, A. & Ruiz, M. T. The chemical composition of the Small Magellanic Cloud H ii region NGC 346 and the primordial helium abundance. Astrophys. J. 541, 688–700 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Binder, B. A. & Povich, M. S. A multiwavelength look at Galactic massive star-forming regions. Astrophys. J. 864, 136 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peimbert, A. & Peimbert, M. On the O/H, Mg/H, Si/H, and Fe/H gas and dust abundance ratios in Galactic and extragalactic H ii regions. Astrophys. J. 724, 791–798 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sánchez, S. F. et al. PPAK integral field spectroscopy survey of the Orion Nebula. Data release. Astron. Astrophys. 465, 207–217 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Mesa-Delgado, A., Esteban, C. & García-Rojas, J. Small-scale behavior of the physical conditions and the abundance discrepancy in the Orion Nebula. Astrophys. J. 675, 389–404 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • García-Rojas, J. Physical Conditions and Chemical Abundances in Photoionized Nebulae from Optical Spectra 89–121 (Springer International Publishing, 2020).

  • Liu, X. W. et al. NGC 6153: a super-metal-rich planetary nebula? Mon. Not. R. Astron. Soc. 312, 585–628 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wesson, R., Liu, X. W. & Barlow, M. J. Physical conditions in the planetary nebula Abell 30. Mon. Not. R. Astron. Soc. 340, 253–263 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Storey, P. J. & Sochi, T. The continuum emission spectrum of Hf 2-2 near the Balmer limit and the ORL versus CEL abundance and temperature discrepancy. Mon. Not. R. Astron. Soc. 440, 2581–2587 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Corradi, R. L. M., García-Rojas, J., Jones, D. & Rodríguez-Gil, P. Binarity and the abundance discrepancy problem in planetary nebulae. Astrophys. J. 803, 99 (2015).

    Article 
    ADS 

    Google Scholar
     

  • García-Rojas, J. et al. MUSE spectroscopy of planetary nebulae with high abundance discrepancies. Mon. Not. R. Astron. Soc. 510, 5444–5463 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Richer, M. G. et al. NGC 6153: reality is complicated. Astron. J. 164, 243 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Source link