May 28, 2024

Temporal controls over inter-areal cortical projection neuron fate diversity – Nature

  • 1.

    Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L. & Helmchen, F. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 499, 336–340 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Yamashita, T. & Petersen, C. C. Target-specific membrane potential dynamics of neocortical projection neurons during goal-directed behavior. eLife 5, e15798 (2016).

    Article 

    Google Scholar
     

  • 4.

    Glickfeld, L. L., Andermann, M. L., Bonin, V. & Reid, R. C. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16, 219–226 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Kwon, S. E., Yang, H., Minamisawa, G. & O’Connor, D. H. Sensory and decision-related activity propagate in a cortical feedback loop during touch perception. Nat. Neurosci. 19, 1243–1249 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Fame, R. M., MacDonald, J. L. & Macklis, J. D. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 34, 41–50 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Sorensen, S. A. et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cerebral Cortex 25, 433–449 (2015).

    Article 

    Google Scholar
     

  • 9.

    Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Aronoff, R. et al. Long-range connectivity of mouse primary somatosensory barrel cortex. Eur. J. Neurosci. 31, 2221–2233 (2010).

    Article 

    Google Scholar
     

  • 11.

    Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096–1111 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Gong, H. et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7, 12142 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786.e19 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell types. Nature 598, 174–181 (2021).

  • 15.

    Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222-3241.e26 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Kebschull, J. M. et al. High-throughput mapping of single-neuron projections by sequencing of barcoded rna. Neuron 91, 975–987 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Han, Y. et al. The logic of single-cell projections from visual cortex. Nature 556, 51–56 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Yamashita, T. et al. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80, 1477–1490 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yamashita, T. et al. Diverse long-range axonal projections of excitatory layer 2/3 neurons in mouse barrel cortex. Front. Neuroanat. 12, 33 (2018).

    Article 

    Google Scholar
     

  • 20.

    Rebsam, A., Seif, I. & Gaspar, P. Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J. Neurosci. 22, 8541–8552 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Molnár, Z., Kurotani, T., Higashi, S., Yamamoto, N. & Toyama, K. Development of functional thalamocortical synapses studied with current source-density analysis in whole forebrain slices in the rat. Brain Res. Bull. 60, 355–371 (2003).

    Article 

    Google Scholar
     

  • 22.

    Wang, C. L. et al. Activity-dependent development of callosal projections in the somatosensory cortex. J. Neurosci. 27, 11334–11342 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Hand, R. A., Khalid, S., Tam, E. & Kolodkin, A. L. Axon dynamics during neocortical laminar innervation. Cell Rep. 12, 172–182 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Klingler, E. et al. A Translaminar genetic logic for the circuit identity of intracortically projecting neurons. Curr. Biol. 29, 332–339.e5 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Quairiaux, C., Megevand, P., Kiss, J. Z. & Michel, C. M. Functional development of large-scale sensorimotor cortical networks in the brain. J. Neurosci. 31, 9574–9584 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    van der Bourg, A. et al. Layer-specific refinement of sensory coding in developing mouse barrel cortex. Cereb. Cortex 84, 401–416 (2016).


    Google Scholar
     

  • 29.

    Kuwajima, T., Soares, C. A., Sitko, A. A., Lefebvre, V. & Mason, C. SoxC transcription factors promote contralateral retinal ganglion cell differentiation and axon guidance in the mouse visual system. Neuron 93, 1110–1125.e5 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Paolino, A. et al. Differential timing of a conserved transcriptional network underlies divergent cortical projection routes across mammalian brain evolution. Proc. Natl Acad. Sci. USA 117, 10554–10564 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Taylor, R. J. et al. Double UP: a dual color, internally controlled platform for in utero knockdown or overexpression. Front. Mol. Neurosci. 13, 82 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Platt, R. J., et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Vitali, I. et al. Progenitor hyperpolarization regulates the sequential generation of neuronal subtypes in the developing neocortex. Cell 174, 1264–1276.e15 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. Front. Neural Circuits 4, 100 (2010).

    Article 

    Google Scholar
     

  • 36.

    Golding, B. et al. Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits. Neuron 81, 1057–1069 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Oberst, P. et al. Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature 573, 370–374 (2019)

  • Source link