May 19, 2024

The challenges and opportunities of battery-powered flight – Nature

  • 1.

    Soreau, R. in The Practical Engineer vol. 9 (6 April 1894) 266–267 (Technical Publishing Co., 1894).

  • 2.

    Fleming, G. G. & deLépinay, I. Environmental trends in aviation to 2050. In ICAO Environmental Report 2019 Ch. 1 (International Civil Aviation Organization, 2019).

  • 3.

    Sindreu, J. Next stop for electric-vehicle SPAC mania: the Jetsons. Wall Street Journal (11 February 2021).

  • 4.

    National Academies of Sciences, Engineering, and Medicine. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions, https://doi.org/10.17226/23490 (National Academies Press, 2016).A review of the state of the art and prospects for low-carbon propulsion for commercial aircraft including electric drive technologies.

  • 5.

    Epstein, A. H. & O’Flarity, S. M. Considerations for reducing aviation’s CO2 with aircraft electric propulsion. J. Propul. Power 35, 572–582 (2019). An analysis of the potential and requirements for electric propulsion to substantially reduce aviation’s CO2, concluding that very considerable investment and advancement is required.

    Article 

    Google Scholar
     

  • 6.

    Hepperle, M. Electric flight—potential and limitations. In AVT-209 Workshop on Energy Efficient Technologies and Concepts of Operation 9-1–9-30 (NATO, 2012).

  • 7.

    Schneider, D. C. Jr An Exploratory Analysis Of Commercial Airline Contingency Fuel Calculations: With Forecasting And Optimization. PhD thesis, The George Washington Univ. (2009).

  • 8.

    Kondo, T. Fuel conservation—reserve fuel optimization. In Proc. 2005 Boeing Performance and Flight Operations Engineering Conf. 3 (2005).

  • 9.

    Pratt & Whitney Canada. PT6 Flat Rate Overhaul Program https://www.pwc.ca/en/products-and-services/services/maintenance-programs-and-solutions/pwcsmart-maintenance-solutions/pwcsmart-pt6a/flat-rate-overhaul-program (2021).

  • 10.

    737NG maintenance analysis & budget. Aircraft Commerce 70, 12–30 (2010).

  • 11.

    Langford, J. S. & Hall, D. K. Electrified aircraft propulsion. Bridge 50, 21–27 (2020). A presentation connecting fundamental aircraft design parameters and battery performance to aircraft capability.


    Google Scholar
     

  • 12.

    Kadhiresan, A. R. & Duffy, M. J. Conceptual design and mission analysis for eVTOL urban air mobility flight vehicle configurations. In AIAA Aviation 2019 Forum 2873 (AIAA, 2019).

  • 13.

    Silva, C., Johnson, W. R., Solis, E., Patterson, M. D. & Antcliff, K. R. VTOL urban air mobility concept vehicles for technology development. In 2018 Aviation Technology, Integration and Operations Conf. 3847 (AIAA, 2018).

  • 14.

    Duffy, M. J., Wakayama, S. R., Hupp, R., Lacy, R. & Stauffer, M. A study in reducing the cost of vertical flight with electric propulsion. In 17th AIAA Aviation Technology, Integration and Operations Conf. (AIAA, 2017).

  • 15.

    Antcliff, K. R. et al. Mission analysis and aircraft sizing of a hybrid-electric regional aircraft. In 54th AIAA Aerospace Sciences Meeting 1028 (AIAA, 2016).

  • 16.

    Lents, C. E. & Hardin, L. W. Fuel burn and energy consumption reductions of a single-aisle class parallel hybrid propulsion system. In AIAA Propulsion and Energy 2019 Forum 4396 (AIAA, 2019).

  • 17.

    Voskuijl, M., van Bogaert, J. & Rao, A. G. Analysis and design of hybrid electric regional turboprop aircraft. CEAS Aeronaut. J. 9, 15–25 (2017); correction 11, 303 (2020).

    Article 

    Google Scholar
     

  • 18.

    US Federal Aviation Authority. Events with Smoke, Fire, Extreme Heat or Explosion Involving Lithium Batteries, https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf (FAA, accessed 28 August 2021).

  • 19.

    European Aviation Safety Agency. Special Condition LSA Propulsion Lithium Batteries. Doc. No. SC-LSA-F2480-01 (EASA, 2017).

  • 20.

    Society of Automotive Engineers. Design and Development of Rechargeable Lithium Battery Systems for Aerospace Applications. Standard AIR6343 (SEA, 2020).

  • 21.

    Office of Energy Efficiency & Renewable Energy. Battery500: Progress Update,https://www.energy.gov/eere/articles/battery500-progress-update (DOE, 19 May 2020).

  • 22.

    Soloveichik, G. ARPA-E IONICS program update. In 2020 IONICS Annual Review Meeting https://www.arpa-e.energy.gov/2020-ionics-annual-review-meeting (ARPA-E, 2020).

  • 23.

    Cuberg. Cuberg next-gen electric aviation battery technology receives U.S. Department of energy validation of industry-leading performance. PR Newswire, https://www.prnewswire.com/news-releases/cuberg-next-gen-electric-aviation-battery-technology-receives-us-department-of-energy-validation-of-industry-leading-performance-301078332.html (17 June 2020).

  • 24.

    Singh, J. & Holme, T. QuantumScape next-generation solid-state battery presentation. Zenodo https://doi.org/10.5281/zenodo.4609278 (2020).

  • 25.

    24M Technologies. ARPA-E IONICS. In 2020 IONICS Annual Review Meeting https://www.arpa-e.energy.gov/2020-ionics-annual-review-meeting (ARPA-E, 2020).

  • 26.

    Davis, S. J. et al. Net-zero emissions energy systems. Science https://doi.org/10.1126/science.aas9793 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Zhu, Y. et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl Acad. Sci. 117, 27195–27203 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Lain, M. J., Brandon, J.& Kendrick. E. Design strategies for high power vs. high energy lithium ion cells. Batteries 5, 64 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Yang, Y. et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13, 2209–2219 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Hatzell, K. B. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Solid Power: Battery Data. https://s28.q4cdn.com/717221730/files/doc_presentations/Solid-Power-Investor-Presentation-June-2021-Final.pdf (accessed 28 August 2021).

  • 33.

    Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Smith, P. F., Takeuchi, K. J., Marschilok, A. C. & Takeuchi, E. S. Holy grails in chemistry: investigating and understanding fast electron/cation coupled transport within inorganic ionic matrices. Acc. Chem. Res. 50, 544–548 (2017). A perspective highlighting the challenges in meeting diverse application needs within a battery chemistry, pointing out the need for new chemistry breakthroughs to address these needs.

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Crittenden, M. Ultralight batteries for electric airplanes. IEEE Spectr. 57, 44–49 (2020).

    Article 

    Google Scholar
     

  • 37.

    Zhang, H., Li, X. & Zhang, H. Li–S and Li–O2 Batteries with High Specific Energy (Springer,2017).

  • 38.

    Zu, C.-X. & Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Krause, F. C. et al. High specific energy lithium primary batteries as power sources for deep space exploration. J. Electrochem. Soc. 165, A2312–A2320 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Liu, W., Li, H., Xie, J.-Y. & Fu, Z.-W. Rechargeable room-temperature CFx-sodium battery. ACS Appl. Mater. Interfaces 6, 2209–2212 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Krishnamurthy, V. & Viswanathan, V. Beyond transition metal oxide cathodes for electric aviation: The case of rechargeable CFx. ACS Energy Lett. 5, 3330–3335 (2020). An analysis pointing out the opportunities around conversion cathodes and challenges associated with making CFx battery chemistry rechargeable.

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Hua, X. et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 20, 841–850 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Neubauer, J., Pesaran, A., Bae, C., Elder, R. & Cunningham, B. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles. J. Power Sources 271, 614–621 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    National Academies of Sciences, Engineering, and Medicine. Advances, Challenges, and Long-Term Opportunities in Electrochemistry: Addressing Societal Needs: Proceedings of a Workshop—in Brief, https://doi.org/10.17226/25760 (National Academies Press, 2020). A review of the opportunities enabled by new tools, computational simulations and experimental characterization for discovering new electrochemical devices.

  • 45.

    Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 46.

    Liu, D. et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 31, 1806620 (2019).

    Article 

    Google Scholar
     

  • 47.

    Meng, Y. S. & Arroyo-de Dompablo, M. E. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc. Chem. Res. 46, 1171–1180 (2012).

    Article 

    Google Scholar
     

  • 48.

    Severson, K. A. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383–391 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Dave, A. et al. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell Rep. Phys. Sci. 1, 100264 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Sripad, S. & Viswanathan, V. Performance metrics required of next-generation batteries to make a practical electric semi truck. ACS Energy Lett. 2, 1669–1673 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Fang, C., Wang, X. & Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Reddy, M. A., Breitung, B. & Fichtner, M. Improving the energy density and power density of CFx by mechanical milling: a primary lithium battery electrode. ACS Appl. Mater. Interfaces 5, 11207–11211 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Li, Y., Khurram, A. & Gallant, B. M. A high-capacity lithium-gas battery based on sulfur fluoride conversion. J. Phys. Chem. C 122, 7128 (2018).

  • Source link