May 6, 2024

The contribution of insects to global forest deadwood decomposition – Nature

  • 1.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Chambers, J. Q., Higuchi, N., Schimel, J. P. J., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    González, G. et al. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio 37, 588–597 (2008).


    Google Scholar
     

  • 5.

    Stokland, J., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).

  • 6.

    Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. Philos. Soc. 91, 70–85 (2016).


    Google Scholar
     

  • 8.

    Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    ADS 

    Google Scholar
     

  • 11.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Portillo-Estrada, M. et al. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13, 1621–1633 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: implications for decomposition in the northern forest. Northeast. Nat. 24, B209–B234 (2017).


    Google Scholar
     

  • 14.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Martin, A., Dimke, G., Doraisami, M. & Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).

  • 17.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS 

    Google Scholar
     

  • 18.

    Marshall, D. J., Pettersen, A. K., Bode, M. & White, C. R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 4, 406–411 (2020).


    Google Scholar
     

  • 19.

    Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7, 974–985 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Diaz, S., Settele, J. & Brondizio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovermental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  • 21.

    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    ADS 

    Google Scholar
     

  • 22.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    ADS 

    Google Scholar
     

  • 24.

    Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).


    Google Scholar
     

  • 25.

    Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926 (2020).


    Google Scholar
     

  • 26.

    Wu, D., Seibold, S., Ruan, Z., Weng, C. & Yu, M. Island size affects wood decomposition by changing decomposer distribution. Ecography 44, 456–468 (2021).


    Google Scholar
     

  • 27.

    Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 15, 1 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).

    ADS 

    Google Scholar
     

  • 29.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).

    CAS 

    Google Scholar
     

  • 31.

    A’Bear, A. D., Jones, T. H., Kandeler, E. & Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70, 151–158 (2014).


    Google Scholar
     

  • 32.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).

  • 33.

    Smyth, C. E., Kurz, W. A., Trofymow, J. A. & CIDET Working Group. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222, 1080–1091 (2011).


    Google Scholar
     

  • 34.

    Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).


    Google Scholar
     

  • 35.

    Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).

    CAS 

    Google Scholar
     

  • 36.

    Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. in Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).

  • 37.

    Harvell, M. C. E. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Berkov, A. in Saproxylic Insects (ed. Ulyshen, M. D.) 547–580 (Springer, 2018).

  • 39.

    Wang, C., Bond-Lamberty, B. & Gower, S. T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132, 374–381 (2002).

    ADS 

    Google Scholar
     

  • 40.

    Peršoh, D. & Borken, W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115, 516–525 (2017).


    Google Scholar
     

  • 41.

    Campbell, J., Donato, D., Azuma, D. & Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res. 112, G04014 (2007).

    ADS 

    Google Scholar
     

  • 42.

    van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11, 7305–7329 (2014).

    ADS 

    Google Scholar
     

  • 43.

    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    CAS 

    Google Scholar
     

  • 44.

    Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).


    Google Scholar
     

  • 45.

    Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).


    Google Scholar
     

  • 46.

    Ryvarden, L. & Gilbertson, R. L. The Polyporaceae of Europe (Fungiflora, 1994).

  • 47.

    Eriksson, J. & Ryvarden, L. The Corticiaceae of North Europe Parts 1–8 (Fungiflora, 1987).

  • 48.

    Boddy, L., Hynes, J., Bebber, D. P. & Fricker, M. D. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50, 9–19 (2009).


    Google Scholar
     

  • 49.

    Moore, D. Fungal Morphogenesis (Cambridge Univ. Press, 1998).

  • 50.

    Clemencon, H. Anatomy of the Hymenomycetes (Univ. Lausanne, 1997).

  • 51.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • 52.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).


    Google Scholar
     

  • 53.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • 54.

    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

  • 55.

    Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274, 2753–2759 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Food and Agriculture Organization. Global Ecological Zones for FAO Forest Reporting: 2010 Update, Forest Resource Assessment Working Paper (Food and Agriculture Organization, 2012).

  • 57.

    Food and Agriculture Organization. Global Forest Resources Assessment 2015 (Food and Agriculture Organization, 2016).

  • 58.

    Christensen, M. et al. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Eco. Man. 210, 267–282 (2005).


    Google Scholar
     

  • 59.

    Kobayashi, T. et al. Production of global land cover data – GLCNMO2013. J. Geogr. Geol. 9, 1–15 (2017).


    Google Scholar
     

  • 60.

    Harmon, M. E., Woodall, C. W., Fasth, B., Sexton, J. & Yatkov, M. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species Research Paper NRS-15 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).

  • 61.

    Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 7, 36 (2020).


    Google Scholar
     

  • 62.

    Gora, E. M., Kneale, R. C., Larjavaara, M. & Muller-Landau, H. C. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22, 1189–1205 (2019).

    CAS 

    Google Scholar
     

  • 63.

    Hérault, B. et al. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164, 243–251 (2010).

    ADS 

    Google Scholar
     

  • 64.

    Thünen-Institut für Waldökosysteme. Der Wald in Deutschland – Ausgewählte Ergebnisse der dritten Bundeswaldinventur (Bundesministerium für Ernährung und Landwirtschaft, 2014).

  • 65.

    Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68 (2019).


    Google Scholar
     

  • 66.

    Richardson, S. J. et al. Deadwood in New Zealand’s indigenous forests. For. Ecol. Manage. 258, 2456–2466 (2009).


    Google Scholar
     

  • 67.

    Shorohova, E. & Kapitsa, E. Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For. Ecol. Manage. 356, 273–284 (2015).


    Google Scholar
     

  • 68.

    Szymañski, C., Fontana, G. & Sanguinetti, J. Natural and anthropogenic influences on coarse woody debris stocks in Nothofagus–Araucaria forests of northern Patagonia, Argentina. Austral Ecol. 42, 48–60 (2017).


    Google Scholar
     

  • 69.

    Link, K. G. et al. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS One 13, e0200917 (2018).

  • 70.

    Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, B. Saugier & H. A. Mooney) 543–557 (Academic Press, 2001).

  • Source link