May 20, 2024

The emergence, genomic diversity and global spread of SARS-CoV-2 – Nature

  • 1.

    Zhu, N. et al.A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382, 727–733 (2020). One of the first papers to describe the identification of SARS-CoV-2 in Wuhan in late December 2019, providing the sequences of three full-length viral genomes and the successful isolation of the novel coronavirus.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Lu, R. et al.Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020). This study describes the genomic structure and phylogenetic position of eight complte and two partial SARS-CoV-2 genome sequences obtained from samples of nine patients from different hospitals in Wuhan in late December, 2019.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 4.

    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). In addition to providing the early identification of SARS-CoV-2, this paper includes a description of the closest relative of SARS-CoV-2 identified to date—the bat-derived coronavirus RaTG13.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 5.

    Tan, W. et al. A novel coronavirus genome identified in a cluster of pneumonia cases – Wuhan, China 2019–2020. China CDC Weekly 2, 61–62 (2020). Genomic sequencing of the novel coronavirus, initially named after nCoV-19.

  • 6.

    Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).


    Google Scholar
     

  • 7.

    WHO. WHO-convened Global Study of Origins of SARS-CoV-2: China Part. Joint WHO–China Study (WHO, 2021).

  • 8.

    Hill, V. & Rambaut, A. Phylodynamic analysis of SARS-CoV-2. Virological https://virological.org/t/phylodynamic-analysis-of-sars-cov-2-update-2020-03-06/420 (2020).

  • 9.

    Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020). An early estimate of the epidemiological characteristics at the start of the COVID-19 outbreak, providing important evidence of human-to-human transmission from the middle of December 2019 in Wuhan, China.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514–523 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Wang, Q. H. et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–904 (2020). Identification and structural basis of the binding of the ACE2 receptor to SARS-CoV-2.

  • 13.

    Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 14.

    Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020). This paper describes the fundamental genomic features of SARS-CoV-2—in particular, the RBD and the furin cleavage site—and outlines the case for its zoonotic origin.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e00127-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Garry, R. F. & Gallaher, W. R. Naturally occurring indels in multiple coronavirus spikes. Virological https://virological.org/t/naturally-occurring-indels-in-multiple-coronavirus-spikes/560 (2020).

  • 17.

    Li, X. et al. A furin cleavage site was discovered in the S protein of the 2019 novel coronavirus [in Chinese]. Chin. J. Bioinform. 18, 103–108 (2020).


    Google Scholar
     

  • 18.

    Wrobel, A. G. et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 27, 763–767 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Johnson, B. A. et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591, 293–299 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 20.

    Zhou, P. et al. Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 588, E6 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417(2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Lam, T. T. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 23.

    Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289(2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 24.

    Li, X. et al. Pathogenicity, tissue tropism and potential vertical transmission of SARSr-CoV-2 in Malayan pangolins. Preprint at https://doi.org/10.1101/2020.06.22.164442 (2020).

  • 25.

    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Murakami, S. et al. Detection and characterization of bat sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis. 26, 3025–3029 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).

  • 29.

    Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).

  • 30.

    Temmam, S. et al. Coronaviruses with a SARS-CoV-2-like receptor-binding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula. Preprint at https://doi.org/10.21203/rs.3.rs-871965/v1 (2021).

  • 31.

    Bouvet, M. et al. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl Acad. Sci. USA 109, 9372–9377 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 32.

    Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9–20 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Rockett, R. J. et al. Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nat. Med. 26, 1398–1404 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Popa, A. et al. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci. Transl. Med. 12, eabe2555 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Oude Munnink, B. B. et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat. Med. 26, 1405–1410 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Miller, D. et al. Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. Nat. Commun. 11, 5518 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 38.

    du Plessis, L. et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science 371, 708–712 (2021). This milestone paper describes the genomic surveillance of SARS-CoV-2 in the UK and used an analysis of more than 50,000 genome sequences to analyse the structure of SARS-CoV-2 lineages at a fine scale.

    PubMed 
    ADS 

    Google Scholar
     

  • 39.

    Zhong, N. S. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 362, 1353–1358 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Lu, J. et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell 181, 997–1003 (2020). A detailed description of the genomic epidemiology of SARS-CoV-2 in Guangdong province, China, illustrating how genomic surveillance facilitated outbreak containment in China.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Liu, Z. et al. Identification of common deletions in the spike protein of severe acute respiratory syndrome coronavirus 2. J. Virol. 94, e00790-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Imported coronavirus variant case reported in Guangdong. XINHUA http://www.xinhuanet.com/english/2021-01/03/c_139637931.htm (3 January 2021).

  • 43.

    Guangdong reports imported coronavirus variant case. XINHUA http://www.xinhuanet.com/english/2021-01/06/c_139646690.htm (6 January 2021).

  • 44.

    Holshue, M. L. et al. First case of 2019 novel coronavirus in the United States. New Engl. J. Med. 382, 929–936 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 26 https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200215-sitrep-26-covid-19.pdf?sfvrsn=a4cc6787_2 (WHO, 2020).

  • 46.

    Worobey, M. et al. The emergence of SARS-CoV-2 in Europe and North America. Science 370, 564–570 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Gonzalez-Reiche, A. S. et al. Introductions and early spread of SARS-CoV-2 in the New York City area. Science 369, 297–301 (2020). This paper analysed the early transmission dynamics of SARS-CoV-2 in New York City, highlighting viral introductions from Europe to the USA.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 48.

    Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 369, 582–587 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 49.

    Bedford, T. et al. Cryptic transmission of SARS-CoV-2 in Washington state. Science 370, 571–575 (2020). This paper describes the cryptic transmission of SARS-CoV-2 in the USA.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Maurano, M. T. et al. Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region. Genome Res. 30, 1781–1788 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Fauver, J. R. et al. Coast-to-coast spread of SARS-CoV-2 during the early epidemic in the United States. Cell 181, 990–996 (2020). This study describes the long-distance domestic spread of SARS-CoV-2 in the USA.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Moreno, G. K. et al. Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nat. Commun. 11, 5558 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 53.

    Duchene, S. et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 6, veaa061 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G. & Conticello, S. G. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci. Adv. 6, eabb5813 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 56.

    Simmonds, P. Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short- and long-term evolutionary trajectories. mSphere 5, e00408-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Lu, G., Wang, Q. & Gao, G. F. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 23, 468–478 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Wang, Q., Wong, G., Lu, G., Yan, J. & Gao, G. F. MERS-CoV spike protein: targets for vaccines and therapeutics. Antiviral Res. 133, 165–177 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827 (2020). An important paper that provided the initial evidence that the D614G substitution increased the infectivity—and therefore transmissibility—of SARS-CoV-2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121 (2020).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 62.

    Zhang, L. et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 6013 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Yurkovetskiy, L. et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739–751 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 65.

    Lassaunière, R. et al. SARS-CoV-2 Spike Mutations Arising in Danish Mink and their Spread to Humans (Working paper of SSI), https://files.ssi.dk/Mink-cluster-5-short-report_AFO2 (2020).

  • 66.

    Greaney, A. J. et al. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 29, 44–57 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269 (2021).

  • 68.

    Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2020).


    Google Scholar
     

  • 69.

    Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARSCoV-2) lineage with multiple spike mutations in South Africa. Preprint at https://doi.org/10.1101/2020.12.21.20248640 (2020).

  • 70.

    Faria, N. R. et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586 (2021).

  • 71.

    Naveca, F. et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein. Virological https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spikeprotein/585 (2021).

  • 72.

    O’Toole, Á. & Hill, V. SARS-CoV-2 lineages: B.1.617.2 report. https://cov-lineages.org/global_report_B.1.617.2.html (2021).

  • 73.

    MacLean, O. A. et al. Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLoS Biol. 19, e3001115 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Martin, D. P. et al. The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape. Preprint at https://doi.org/10.1101/2021.02.23.21252268 (2021).

  • 75.

    Kupferschmidt, K. Viral evolution may herald new pandemic phase. Science 371, 108–109 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 76.

    Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130–135 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 77.

    Liu, C. et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature 596, 273–275 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 79.

    Collier, D. A. et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593, 136–141 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 80.

    Nelson, G. et al. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. Preprint at https://doi.org/10.1101/2021.01.13.426558 (2021).

  • 81.

    Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622–625 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184, 2372–2383 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Dejnirattisai, W. et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 184, 2939–2954 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Su, Y. C. F. et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. mBio 11, e01610-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Young, B. E. et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet 396, 603–611 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Gong, Y. N. et al. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion mutant and clade possibly associated with infections in Middle East. Emerg. Microbes Infect. 9, 1457–1466 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Du, P. et al. Genomic surveillance of COVID-19 cases in Beijing. Nat. Commun. 11, 5503 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 88.

    Pan, A. et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. J. Am. Med. Assoc. 323, 1915–1923 (2020).

    CAS 

    Google Scholar
     

  • 89.

    Hao, X. et al. Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584, 420–424 (2020). A comprehensive study of the transmission dynamics of COVID-19 in Wuhan, China, through time, providing important lessons learnt from the interventions in the city.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Xu, X. et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat. Med. 26, 1193–1195 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Liu, A. et al. Seropositive prevalence of antibodies against SARS-CoV-2 in Wuhan, China. JAMA Netw. Open. 3, e2025717 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Chinese Center for Disease Control and Prevention. Scientific Understanding of the Prevalence of SARS-CoV-2: Q&A on the Results of National COVID-19 Seroepidemiological Survey in China, http://www.chinacdc.cn/yw_9324/202012/t20201228_223494.html (Chinese CDC, 2020).

  • 93.

    Li, Z. et al. Antibody seroprevalence in the epicenter Wuhan, Hubei, and six selected provinces after containment of the first epidemic wave of COVID-19 in China.Lancet Reg. Health West Pac. 8, 100094 (2021).

  • 94.

    Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368, 489–493 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 95.

    Niehus, R., De Salazar, P. M., Taylor, A. R. & Lipsitch, M. Using observational data to quantify bias of traveller-derived COVID-19 prevalence estimates in Wuhan, China. Lancet Infect. Dis. 20, 803–808 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Cao, S. Y. et al. Post-lockdown SARS-CoV-2 nucleic acid screening in nearly ten million residents of Wuhan, China. Nat. Commun. 11,5917 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 97.

    Jia, J. S. et al. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 582, 389–394 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 98.

    Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 395, 689–697 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature 585, 410–413 (2020). This study quantified the effects of various non-pharmaceutical interventions and their timings on COVID-19, providing early evidence that informed response efforts around the world.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 100.

    Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 101.

    Zhang, J. et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect. Dis. 20, 793–802 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Kraemer, M. U. G. et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493–497 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 103.

    Leung, K., Wu, J. T., Liu, D. & Leung, G. M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet 395, 1382–1393 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Zhang, Z.-B. et al. Countries of origin of imported COVID-19 cases into China and measures to prevent onward transmission. J. Travel Med. 27, taaa139 (2020).

    PubMed 

    Google Scholar
     

  • 105.

    Bai, L. et al. Controlling COVID-19 transmission due to contaminated imported frozen food and food packaging. China CDC Wkly 3, 30–33 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Pang, X. et al. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing. Natl Sci. Rev. 7, 1861–1864 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Xing, Y., Wong, G. W. K., Ni, W., Hu, X. & Xing, Q. Rapid response to an outbreak in Qingdao, China. N. Engl. J. Med. 383, e129 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Bogoch, I. I. et al. Potential for global spread of a novel coronavirus from China. J. Travel Med. 27, taaa0111 (2020).


    Google Scholar
     

  • 109.

    Lai, S., Bogoch, I. I., Watts, A., Khan, K. & Tatem, A. Preliminary risk analysis of 2019 novel coronavirus spread within and beyond China. WorldPop https://www.worldpop.org/events/china (2020).

  • 110.

    Yang, J. et al. Uncovering two phases of early intercontinental COVID-19 transmission dynamics. J. Travel Med. 27, taaa200 (2020).

    PubMed 

    Google Scholar
     

  • 111.

    Pullano, G. et al. Novel coronavirus (2019-nCoV) early-stage importation risk to Europe, January 2020. Euro Surveill. 25, 2000057 (2020).

    PubMed Central 

    Google Scholar
     

  • 112.

    Tian, H. et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 368, 638–642 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 113.

    Wells, C. R. et al. Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proc. Natl Acad. Sci. USA 117, 7504–7509 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Russell, T. W. et al. Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study. Lancet Public Health 6, e12–e20 (2021).

    PubMed 

    Google Scholar
     

  • 115.

    Devi, S. COVID-19 resurgence in Iran. Lancet 395, 1896 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 26, 855–860 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Salje, H. et al. Estimating the burden of SARS-CoV-2 in France. Science 369, 208–211 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 118.

    Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 119.

    Bushman, D. et al. Detection and genetic characterization of community-based SARS-CoV-2 infections — New York City, March 2020. MMWR Morb. Mortal. Wkly Rep. 69, 918–922 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Rossen, L. M., Branum, A. M., Ahmad, F. B., Sutton, P. & Anderson, R. N. Excess deaths associated with COVID-19, by age and race and ethnicity — United States, January 26–October 3, 2020. MMWR Morb. Mortal. Wkly Rep. 69, 1522–1527 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Candido, D. S. et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 369, 1255–1260 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 122.

    Silveira, M. F. et al. Population-based surveys of antibodies against SARS-CoV-2 in Southern Brazil. Nat. Med. 26, 1196–1199 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Acharya, R. & Porwal, A. A vulnerability index for the management of and response to the COVID-19 epidemic in India: an ecological study. Lancet Glob. Health 8, e1142–e1151 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Laxminarayan, R. et al. Epidemiology and transmission dynamics of COVID-19 in two Indian states. Science 370, 691–697 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 125.

    Massinga Loembé, M. et al. COVID-19 in Africa: the spread and response. Nat. Med. 26, 999–1003 (2020).

    PubMed 

    Google Scholar
     

  • 126.

    Gilbert, M. et al. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. Lancet 395, 871–877 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Pullano, G. et al. Underdetection of cases of COVID-19 in France threatens epidemic control. Nature 590, 134–139 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 128.

    Rice, B. L. et al. Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nat. Med. 27, 447–453 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Salyer, S. J. et al. The first and second waves of the COVID-19 pandemic in Africa: a cross-sectional study. Lancet 397, 1265–1275 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Pei, S., Kandula, S. & Shaman, J. Differential effects of intervention timing on COVID-19 spread in the United States. Sci. Adv. 6, eabd6370 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 131.

    Brauner, J. M. et al. Inferring the effectiveness of government interventions against COVID-19. Science 371, eabd9338 (2020). A chronological and global dataset was constructed to compare the effectiveness of different NPIs in reducing COVID-19 transmission among countries during the first wave of the COVID-19 pandemic.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Haug, N. et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 4, 1303–1312 (2020).

    PubMed 

    Google Scholar
     

  • 133.

    Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 369, eabb9789 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Baker, R. E., Yang, W. C., Vecchi, G. A., Metcalf, C. J. E. & Grenfell, B. T. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science 369, 315–319 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 135.

    Han, E. et al. Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe. Lancet 396, 1525–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20, 1247–1254 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Perkins, T. A. et al. Estimating unobserved SARS-CoV-2 infections in the United States. Proc. Natl Acad. Sci. USA 117, 22597–22602 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Centers for Disease Control and Prevention. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker/#cases_casesper100klast7days (US CDC, 2020).

  • 139.

    The Ministry of Health, Brazil. Coronavirus, Brazil. https://covid.saude.gov.br/ (2021).

  • 140.

    Lemey, P. et al. Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature 595, 713–717 (2021).

  • 141.

    Hodcroft, E. B. et al. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 595, 707–712 (2021).

  • 142.

    European Centre for Disease Prevention and Control. COVID-19. https://www.ecdc.europa.eu/en/covid-19-pandemic (ECDC, 2021).

  • 143.

    Kupferschmidt, K. & Wadman, M. Delta variant triggers new phase in the pandemic. Science 372, 1375–1376 (2021).

    CAS 
    ADS 

    Google Scholar
     

  • 144.

    World Health Organization. Weekly epidemiological update on COVID-19 – 29 June 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—29-june-2021 (WHO, 2021).

  • 145.

    WHO. Tracking SARS-CoV-2 variants, https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (2021).

  • 146.

    Centers for Disease Control and Prevention. SARS-CoV-2 Variant Classifications and Definitions. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html (US CDC, 2021).

  • 147.

    Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 148.

    Li, Q. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182, 1284–1294 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 149.

    Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29, 463–476 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    Saad-Roy, C. M. et al. Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science 372, 363–370 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 151.

    Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 152.

    Cobey, S., Larremore, D. B., Grad, Y. H. & Lipsitch, M. Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination. Nat. Rev. Immunol. 21, 330–335 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Hanage, W. P. & Russell, C. A. Partial immunity and SARS-CoV-2 mutations. Science 372, 354 (2021).

    PubMed 
    ADS 

    Google Scholar
     

  • 154.

    Murray, C. J. L. & Piot, P. The potential future of the COVID-19 pandemic: will SARS-CoV-2 become a recurrent seasonal infection? J. Am. Med. Assoc. 325, 1249–1250 (2021).

    CAS 

    Google Scholar
     

  • 155.

    Phillips, N. The coronavirus is here to stay—here’s what that means. Nature 590, 382–384 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 156.

    Avanzato, V. A. et al. Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell 183, 1901–1912 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 157.

    Aydillo, T. et al. Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer. N. Engl. J. Med. 383, 2586–2588 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 158.

    Lawton, G. Exclusive: Two variants have merged into heavily mutated coronavirus. New Scientist https://www.newscientist.com/article/2268014-exclusive-two-variants-have-merged-into-heavily-mutated-coronavirus/ (16 February 2021).

  • 159.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 160.

    GISAID. UK reports New Variant, termed VUI 202012/01. https://www.gisaid.org/references/gisaid-in-the-news/uk-reports-new-variant-termed-vui-20201201/ (2021).

  • 161.

    Song, S. et al. The global landscape of SARS-CoV-2 genomes, variants, and haplotypes in 2019nCoVR. Genom. Proteom. Bioinform. 18, 749–759 (2020).


    Google Scholar
     

  • 162.

    Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 163.

    Davies, N. G. et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593, 270–274 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 164.

    Frampton, D. et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect. Dis. 21, 1246–1256 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 165.

    Graham, M. S. et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health 6, e335–e345 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 166.

    World Health Organization. Weekly epidemiological update on COVID-19 – 10 August 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—10-august-2021 (WHO, 2021).

  • 167.

    European Centre for Disease Prevention and Control. Emergence of SARS-CoV-2 B.1.617 variants in India and situation in the EU/EEA. https://www.ecdc.europa.eu/en/publications-data/threat-assessment-emergence-sars-cov-2-b1617-variants (ECDC, 2021).

  • 168.

    Delta Plus: Key things to know about new coronavirus variant. The Economic Times https://economictimes.indiatimes.com/news/et-explains/delta-plus-key-things-to-know-about-new-coronavirus-variant-in-india/articleshow/83739996.cms (24 June 2021).

  • 169.

    Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Source link